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Data Augmentation with Regularization for
Multi-labeled Complementary Label Learning
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Abstract—Multi-labeled complementary label learning (MLCLL) is a resource-efficient paradigm aimed at reducing labeling efforts in
multi-label learning (MLL). While existing methods address the MLCLL problem using neural network-based models, they often overfit
to noisy information, leading to sharp decision boundaries. This overfitting issue is further exacerbated when the label correlation,
which could help denoise the supervision, is not fully explored in existing works. In this paper, we propose a novel framework called
NMCB to alleviate the impact of noisy information in MLCLL, which makes a first attempt to explore mixup for MLCLL problem.
Specifically, a tailored version of mixup is employed to achieve a smoother decision boundary of the trained classifier, thereby reducing
the sensitivity of NMCB to noisy labels and enhancing its generalization ability. Moreover, NMCB applies a model to automatically
extract label correlations from non-complementary labels transformed by mixup during the learning process. These extracted
correlations serve as alignment objectives for the output distribution of instance augmentations within a consistency regularization term
of NMCB, further improving the model performance. Empirical studies demonstrate the effectiveness of the proposed method.

Index Terms—Complementary label learning, multi-label learning, mixup, label correlations, consistency regularization.
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1 INTRODUCTION

In real-world scenarios, an instance can be relevant to multi-
ple labels simultaneously, with these labels exhibiting complex
and intertwined correlations [1], [2], [3]. This characteristic
has sparked significant interest among researchers in multi-label
learning (MLL), which aims to learn a classifier capable of
assigning a set of relevant labels to an unseen instance [2], [4],
[5], [6]. However, the uncertain number of relevant labels per
instance and the complexity of semantic labels pose obstacles
for annotators in precisely labeling MLL data [7]. For example,
precisely annotating the image shown in Fig. 1 demands a high
level of attention to distinguish the portrait on the wall as a
“picture” rather than “people” and expertise to identify specific
geographic location labels such as “France”. Besides, identifying
the remaining relevant labels requires exhaustive exploration of
the entire label space, which can be burdensome for annotators,
especially when the label space is large.

To alleviate the laborious efforts involved in precisely labeling
multi-labeled data, the multi-labeled complementary label learn-
ing (MLCLL) paradigm has been proposed [7], where instances
are associated with complementary (irrelevant) labels. Compared
with collecting precise labels, acquiring complementary labels is
significantly more cost-effective and less laborious, since it does
not need the exhaustive examination of the entire label space
and prior knowledge. Similar to fully supervised MLL, the goal
of MLCLL is to train a classifier from complementary labels to
identify relevant labels for unseen instances [8].
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Fig. 1: An example. Relevant labels of this image include “sky”,
“cloud”, “house”, “lamp”, “picture”, “France”, and others. Con-
versely, the label “river” is an complementary label of this image,
indicating that there is no river in this image at all. Labeling the image
with the label “France” requires specialized geographic knowledge,
while annotating the label “picture” (as it is highlighted by a blue box
in the image) needs a high-level attention of annotators.

As a pioneering work, Ishida et al. [9] proposed complemen-
tary label learning (CLL) for multi-class scenarios. Estimating
transition matrix is a common and effective strategy to solve
the CLL problem, in which estimated transition matrix can re-
cover multi-class data from complementary labeled data [10],
[11]. Furthermore, CLL problems are investigated for generative
adversarial network [12], contrastive learning [13], easing the de-
pendence on the transition matrix [14], or multiple complementary
labels [15]. The design of these methods is based on the fact that
only one relevant label exists for multi-class cases. They cannot
be applied to the MLCLL problem since the uncertain number of
relevant labels in MLL given one complementary label.

Subsequently, Gao et al. [7] were the first to develop a neural
network-based method for MLCLL by constructing the true multi-
labeled data distribution from complementary labels. In the former
work [7], non-complementary labels (i.e., all labels in the label
space excluding complementary ones) are used without fully
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considering the label correlation, which is an important source
of information for solving problems with limited supervision as
MLCLL. Note that a substantial portion of the non-complementary
label set consists of irrelevant (noisy) labels, since relevant labels
are sparse [3], [7] and only one complementary label is provided
for each instance. Due to the memorization effect, the learned
neural network model gradually adapts to fit noisy labels after
fitting the relevant ones during the learning process [16], [17]. As
a result, the decision boundary of the classifier trained as in [7]
may be sharp due to overfitting to noisy labels, resulting in weak
generalization [18], [19], [20].

In this paper, we propose a novel framework called NMCB
(NoiseMix Consistency Boost) to address the weak generalization
issues caused by noisy information. Motivated by the insight that
smooth decision boundaries enhance generalization [20], [21],
[22], NMCB pioneers the exploration of achieving smoother deci-
sion boundaries and reducing sensitivity to noisy labels. Building
on the concept of mixup [18], [20], [23], NMCB introduces a ver-
sion of mixup tailored for MLCLL, which creates a smooth set of
new instances with soft supervision based on non-complementary
labels—instead of unavailable relevant labels—thereby mitigat-
ing the effects of label noise and fostering smoother learning
behavior. To address the label correlation distortion introduced
by complementary labeling, NMCB introduces a label correlation
extraction module that automatically learns correlations from the
soft supervision of the non-complementary labels generated by the
mixup component. To further enhance performance, we propose a
consistency regularization term that aligns the model’s predictions
for augmented instances with the extracted label correlations.
These components work synergistically to reduce noise sensitivity
and improve predictive performance. Under a mild assumption,
we establish a theoretical generalization bound for our method to
characterize its performance on unseen instances (see Appendix A
for completeness). Our experimental results demonstrate the effec-
tiveness of the proposed method. The main contributions of this
paper are summarized as follows:

• We propose a novel framework called NMCB, which is
the first to explore a tailored version of mixup in MLCLL.
This manner enables it to achieve smoother decision
boundaries, thereby reducing sensitivity to noisy labels
and enhancing its generalization.

• To alleviate label correlation distortion in MLCLL, NMCB
adopts a model to automatically extract label correlation
from non-complementary labels transformed by the tai-
lored mixup during the training process.

• In NMCB, a new consistency regularization term is in-
troduced to improve performance by emphasizing the
alignment between the output distribution of instance
augmentations and the extracted label correlations in the
embedding space.

The rest of this paper is organized as follows. We review the
related work of MLCLL in Section 2 and provide background
information in Section 3. The details of the proposed method are
presented in Section 4. Section 5 presents the experimental results,
and Section 6 provides the conclusion.

2 RELATED WORK

As a weakly supervised learning paradigm, MLCLL aims to
solve the MLL problem while minimizing the cost of obtaining

labeling information. In this section, we briefly review related
work, including MLL, partial multi-label learning (PML), and
CLL. Additionally, we discuss recent advances in mixup and label
augmentation under weak supervision.

2.1 Multi-label Learning
In MLL, each instance is simultaneously associated with multi-
ple relevant labels. According to the order of label correlations
exploited during model training, previous MLL methods can be
roughly divided into three categories: first-order strategy [24],
second-order strategy [25], [26] and high-order strategy [27].
First-order methods address MLL problems by decomposing
them into a sequence of binary classification tasks [24], [27].
Zhang et al. [2] observed that label correlations exist in multi-
labeled data, while these are ignored by first-order methods.
Subsequently, second-order methods and high-order methods are
proposed to consider label correlations to address MLL problems.
Among them, second-order methods focus on label correlations
between label pairs, where the rankings between relevant and
irrelevant labels [25], or any pair of labels [26]. Recognizing the
more intricate relationships among labels beyond second-order
in many real-world scenarios, high-order methods explore label
correlations among label subsets or all labels [28], [29], [30].
For example, Zhao et al. [29] utilize variational autoencoders
to exploit high-order correlations among labels, enhancing the
learning process. On the other hand, Wang et al. [31] and Xun
et al. [32] both employed specialized neural network components
to automatically capture label correlations. It is worth noting
that high-order methods have the capacity for stronger label
correlation-modeling, while they may suffer from the cost of
increased computational complexity when compared to first and
second-order methods [33]. Compared with MLL, the task of
MLCLL is more challenging than MLL because relevant labels
are unavailable for the MLCLL problem.

2.2 Partial Multi-label Learning
Due to the challenge of collecting fully supervised data, many
researchers have turned to explore weakly supervised learning
as a way to alleviate the labeling burden in MLL [34]. PML,
initially proposed by Xie et al. [35], is a weakly supervised
learning paradigm where each instance is associated with a set of
candidate labels composed of both relevant labels and irrelevant
(noisy) labels. According to the training process, existing PML
methods can be roughly categorized into two groups [36]: end-to-
end strategy and two-stage strategy. In the case of methods falling
under the end-to-end strategy, they leverage a unified framework
to learn from PML data by estimating the confidence level for each
candidate label [35], [37], [38]. Then, these estimated confidence
scores are incorporated into an alternative optimization procedure
for training the model. In the case of methods following the two-
stage strategy, the training process is divided into two stages,
where high-confidence labels are first selected from the candidate
label set and utilized to train the desired model with conventional
MLL methods [39], [40]. Regardless of the strategies employed by
these methods, they handle PML problems with the assumption
that noisy labels only compose a small portion of candidate
labels [7], [33], [41]. In fact, MLCLL tackles the hardest version
of this problem – a high-noise PML problem, in which the
candidate label set for an instance involves all labels except its
complementary label [7]. In such scenarios, existing PML methods
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cannot be directly employed to MLCLL because the PML problem
assumes that candidate labels contain sparse noisy labels.

2.3 Complementary Label Learning
As an emerging research field, CLL was initially proposed to
tackle the problem of multi-class learning, which aims to ease
the heavy burden of collecting precisely labeled data [9]. In
CLL, Ishida et al. [10] utilized uniformly sampled complementary
labels to derive an unbiased risk estimator that can accommodate
arbitrary loss functions for solving the CLL problem. Further-
more, the exploration of CLL in multi-class settings has extended
to encompass biased complementary labels, an extension that
depends on estimating a transition matrix to recover relevant
labels from complementary labels [11]. To reduce the reliance
on an estimated transition matrix, Gao et al. [14] proposed a
discriminative method to directly model the probabilities of com-
plementary labels using the model’s outputs. In addition, Feng
et al. [15] further explored multiple complementary labels to
enhance the labeling information during the learning process. The
aforementioned methods benefit from the fact that each instance
has a single relevant label, which poses challenges in effectively
solving the MLCLL problem since the number of relevant labels
is uncertain and can vary across instances in MLL. Recognizing
the difficulty of collecting precisely multi-labeled data, Gao et
al. [7] first proposed MLCLL to explore the application of CLL
in solving the MLL problem. In their work, a neural network-
based method was introduced to address the MLCLL problem by
deriving an unbiased risk estimator, which constructs the multi-
labeled data distribution from complementary labels under two
mild assumptions. Moreover, they improved the unbiased risk
estimator by designing a gradient-descent friendly (GDF) loss
function. As discussed earlier, their method may gradually fit noisy
labels due to the memorization effect of neural networks, which
may lead to a sharp decision boundary and weak generalization.
In addition, their method does not take full advantage of label
correlations, which remains a key challenge in MLCLL.

2.4 Mixup and Label Augmentation under Weak Super-
vision
Recent studies have explored the use of mixup and label aug-
mentation under weak supervision. For example, Li et al. [42]
investigated mixup strategies in positive-unlabeled learning, which
focuses on the importance of choosing suitable mixup partners to
mitigate label noise. However, their work is limited to binary clas-
sification with partially labeled positive instances, which differs
significantly from the MLCLL scenario, where the supervision is
extremely weak and relevant labels are completely unavailable.
Similarly, Lin et al. [43] proposed a label augmentation method in
CLL to improve the efficiency of label information sharing. Their
method is designed for multi-class classification and relies on class
priors, making it unsuitable for multi-label scenarios. In contrast,
our proposed NMCB framework is the first to introduce a tailored
mixup strategy for the MLCLL problem. It facilitates smoother
decision boundaries, thereby reducing sensitivity to noisy labels
and improving generalization. Additionally, NMCB introduces a
model to automatically extract label correlations and enhance its
performance.

3 PRELIMINARIES

In MLL, let X ⊂ Rd denote the feature space with a dimension of
d, and Y = {1, 2, . . . ,K} be the label space with K possible

labels, where K is greater than 2. A multi-labeled instance
x ∈ X is associated with a set of relevant labels Y ⊆ Y ,
which is sampled from the joint probability distribution p(x, Y ).
For convenience, we represent Y with a K-dimensional vector
y = [y1, y2, . . . , yK ] ∈ {0, 1}K , where yk = 1 indicates the
label k being a relevant label of x (i.e., k ∈ Y ), and 0 otherwise.
The goal of MLL is to learn a multi-labeled classification model
f : X 7→ [0, 1]K by minimizing the expected risk defined as
follows:

R(f) = Ep(x,Y )[L(f(x),y)], (1)

where L : RK × 2Y 7→ R+ is an MLL loss function, such
as binary cross-entropy (BCE) loss, mean squared error (MSE)
loss, etc. We denote fk(x) as the k-th prediction of f(x), which
represents the estimation of p(yk = 1|x).

In MLCLL study, only the complementary labeled dataset
D̄ = {(xi, ȳi)}ni=1 is given, which consists of n instances.
Here, each instance xi ∈ X is paired with a complementary
label ȳi ∈ {Y − Yi}. The complementary labeled instance
(x, ȳ) follows the joint probability distribution p̄(x, ȳ) from
which D̄ is drawn. We denote ȳ as a K-dimensional vector
ȳ = [ȳ1, ȳ2, . . . , ȳK ] ∈ {0, 1}K , in which ȳj = 1 indicates that
the label j serves as the complementary label of x, and ȳj = 0
otherwise. Correspondingly, we utilize Ŷ = Y \ ȳ to denote the
non-complementary label set of x, where its vector representation
is ŷ = [ŷ1, ŷ2, . . . , ŷK ] ∈ {0, 1}K . The relationship between ȳ
and ŷ can be expressed as ŷ = 1− ȳ, where 1 refers to a vector
of all ones with K dimensions. The goal of MLCLL aligns with
MLL, aiming to learn a multi-labeled classifier f : X 7→ [0, 1]K

from D̄ that can assign relevant labels for unseen instances. As
discussed above, MLCLL was first proposed by Gao et al. [7].
Inspired by the challenges of gradient updating in MLCLL, they
designed a GDF loss function. The GDF loss is defined as:

L̄GDF(f(x), ȳ) = −(1− ȳ)log(f(x))− ȳlog(1− f(x)).
(2)

While the GDF loss combined with a neural network has
contributed to promising performance in MLCLL, it may result
in a sharp decision boundary and weak generalization due to the
memorization effect of neural networks. To alleviate this issue, in
the next section, we introduce a novel framework called NMCB,
which incorporates a tailored version of mixup specifically for the
MLCLL problem to facilitate a smoother decision boundary and
reduce the sensitivity of NMCB to noisy labels.

4 NOISEMIX CONSISTENCY BOOST

In this section, we begin by introducing the overall structure of
the proposed method, NMCB, followed by an illustration of the
tailored version of mixup for the MLCLL problem. We then
describe the label correlation extraction model and present a
consistency regularization technique based on these correlations.

4.1 Overview
Fig. 2 depicts the overall illustration of the proposed NMCB
method, which consists of two models: a classification model
and a label correlation extraction model. In the classification
model, an instance x and its corresponding data augmentation
x′, transformed by the tailored version of mixup, are respectively
fed into the classification model f to obtain their predictive
probabilities f(x) and f(x′). With the non-complementary labels
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Fig. 2: Illustration of the proposed NMCB method. The instance x and
its corresponding data augmentation x′ are input into the classification
model f individually. The outputs of these, along with the label
correlations extracted by the model c, are then used to compute the
loss function L̄(f(x), ȳ).

transformed by mixup (ŷ′), the label correlation extraction model
c is employed to automatically capture label correlations among
labels in ŷ′. The loss function L̄(f(x), ȳ) designed in this paper
is then applied to optimize both the classification model and the la-
bel correlation extraction model, taking into account f(x), f(x′),
and the extracted label correlations c(ŷ′). Note that the parameters
of these two models are updated simultaneously through back-
propagation during the learning process. We proceed to introduce
the key components of NMCB in detail in the following sections.

4.2 A Tailored Version of Mixup

As is well-known, neural networks commonly exhibit a mem-
orization effect, which causes the model to gradually fit noisy
labels after fitting relevant ones during the learning process [16],
[17]. In MLCLL, supervision comes exclusively from comple-
mentary labels, and the corresponding non-complementary label
set inevitably contains substantial noisy labels. This effect can
lead neural network-based methods to fit noisy labels, resulting in
a sharp decision boundary and weak generalization. Theoretically,
margin-based analysis shows that classifiers with larger margins
(i.e., lower margin complexity) enjoy stronger generalization
guarantees [21]. Geometrically, larger margins imply that decision
boundaries lie farther from training data and are less prone to com-
plex shapes, which tends to produce smoother boundaries [44].
Empirically, mixup-based methods have been shown to encourage
smoother boundaries and improve robustness [18], [20]. While
these works are not specific to MLCLL, their core insight—that
smoother decision boundaries mitigate noise and enhance gener-
alization—is directly applicable to MLCLL. Motivated by this,
we are eager to seek a strategy that can alleviate the impact of
noisy labels in the MLCLL problem, which facilitates the model
to achieve a smoother decision boundary and reduces the model’s
sensitivity to noisy labels.

A recent line of work in data augmentation has proposed
mixup as a powerful tool for facilitating neural network-based
methods to smooth decision boundaries and reduce the sensitivity
of a model to noisy labels [18], [19], [23]. Mixup is a straight-
forward yet effective technique that creates new instances through
convex combinations of training instances and their corresponding
labels [23]. Compared with the features and labels of the original
instances, the features and labels of the newly created instances lie
between those of two original instances, resulting in a smoother
representation. Learning with smoother features encourages the

neural network-based model to obtain a smoother decision bound-
ary during the learning phase. In this case, the model exhibits
reduced sensitivity to overfitting on noisy labels and enhanced
generalization.

It is worth noting that the standard mixup technique in super-
vised learning operates under the assumption that relevant labels
are available for all training instances. However, in MLCLL, only
weak supervision in the form of complementary labels is provided,
and the derived non-complementary labels may contain noise.
Directly applying standard mixup in this setting is infeasible due to
the absence of fully supervised information. Hence, we introduce a
tailored version of mixup for the proposed method NMCB, which
creates a new instance used by non-complementary labels instead
of relevant labels. The process of creating a new instance (x′, ŷ′)
in this mixup version is illustrated as follows:

x′ = λx+ (1− λ)xj ,

ŷ′ = λŷ + (1− λ)ŷj .
(3)

Here, x and xj are original instances belonging to D̄, ŷ and
ŷj are their non-complementary label vectors, respectively. The
parameter λ ∼ Beta(α, α) represents the mixing level, where
the mixup hyper-parameter α ∈ (0,∞) regulates the strength of
interpolation between feature-target pairs.

4.3 Label Correlation Extraction
Label correlations are prevalent in multi-labeled data and reveal
relationships among different labels [33], [45]. For example, in
real-world scenarios, “street lights” often accompany “streets” but
are unlikely to appear in the “sea”. Motivated by this, we recognize
that label correlations can help a model infer information about
other labels from one, thereby enhancing the model’s performance.
However, directly extracting label correlations from complemen-
tary labels may distort the true relationships among labels due to
the presence of noisy labels in MLCLL.

As discussed earlier, the non-complementary label vector
transformed by the tailored version of mixup becomes softer
compared to the original ones, which helps reduce the impact
of noise for learning a model. Therefore, NMCB applies a model
c : [0, 1]K 7→ RK to automatically extract label correlations from
non-complementary labels transformed by the tailored version of
mixup. Specifically, c is a fully connected layer that needs to be
learned:

c(ŷ′) = Wŷ′, (4)

where W ∈ RK×K denotes the weight matrix of the layer, with
the bias term and activation function omitted for simplicity. In
this way, the i-th correlation factor ci(ŷ′) is a linear combination
of all elements in ŷ′ and hence all possible linear correlations
between the i-th label and other labels are taken into consideration.
These extracted label correlations serve as the alignment objective
for the outputs of the classification model, which encourages this
classification model to consider correlations among labels in the
training phase.

4.4 Consistency Regularization Depending on Label
Correlations
As discussed above, we analyze that label correlations play a
crucial role in MLCLL. Hence, we expect to encourage the
predictions of the classification model for a label involving the col-
laboration between its own prediction and the predictions of other
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Algorithm 1: NMCB Algorithm
Input:
D̄: the complementary-label training set {(xi, ȳi)}ni=1;
θ1: the initial parameters of classifier f ;
θ2: the initial parameters of label correlation extraction
model c;
T : the number of epochs;
β: maximum balancing weight;
A: an external stochastic optimization algorithm;
Output:
f : learned multi-labeled classifier;

1 for t = 1 to T do
2 Let L be the risk, L = 1

n

∑n
i=1 L̄(f(xi), ȳi) =

1
n

∑n
i=1{L̄GDF(f(xi), ȳi) + ψ(t)Φ(xi, ȳi)};

3 Set gradients −∇θ1L and −∇θ2L;
4 Update θ1 by A with −∇θ1L;
5 Update θ2 by A with −∇θ2L;
6 end

labels to improve the model’s performance. A simple strategy
towards this goal is to guide the multi-labeled classification model
to consider label correlations throughout the learning process.
We accomplish that by minimizing the divergence between the
classification model’s outputs of augmentations transformed by a
tailored version of mixup and the corresponding label correlation
vectors.

With the help of consistency-regularized training, the outputs
of the classification model are forced to keep consistency with
label correlations. Specifically, we implement the consistency
regularization term using MSE loss (`2-norm) to emphasize the
alignment of the model’s outputs with the extracted label correla-
tions. The consistency regularization term is defined as:

Φ(x, ȳ) = ‖f(x′)− c(ŷ′)‖22, (5)

where Φ : X × Y 7→ R+ denotes the MSE loss, and the newly
created data point (x′, ŷ′) is computed by Eq. (3). Here, the
complementary labeled data (xj , ȳj) is randomly sampled from
D̄\(x, ȳ). In our framework, MSE is selected as the regularization
method in the consistency term because of its simplicity and
smoothness. To further investigate this design choice, we con-
ducted additional experiments, which are shown in Appendix B.1.

To ensure the ability of the model in handling complementary
labels, we combine the MLCLL loss – GDF loss – with the
regularization term Φ(x, ȳ). The final loss function is expressed
as:

L̄(f(x), ȳ) = L̄GDF(f(x), ȳ) + βΦ(x, ȳ), (6)

where β represents a trade-off parameter to balance the contri-
butions of these two loss terms. The final loss function can be
effectively optimized during the training procedure, which guides
the parameter updating of both the classification model and the
label correlation extraction model. Moreover, it promises that
NMCB possesses the capability to handle complementary labels
and align the classification model outputs with the extracted label
correlations, which further enhances the performance of NMCB.

In Eq. (6), a trade-off factor β is used to control the strength
of regularization. Notably, strong regularization may degrade
the performance of the proposed method since the classification
model may produce low-quality predictions in the initial stage.

TABLE 1: Properties of datasets.

Datasets dim(S) |S| L(S) LCard(S)

bookmark 2150 38912 208 2.03
mediamill 120 41701 101 4.38
eurlex dc 100 8636 412 1.29
eurlex sm 100 13270 201 2.21
delicious 500 14784 983 19.02
tmc2007 981 28596 22 2.16
rcv1-s1 944 5815 101 2.88
rcv1-s2 944 5252 101 2.63
rcv1-s3 944 5410 101 2.61
rcv1-s4 944 5761 101 2.48
rcv1-s5 944 5532 101 2.64
VOC2007 3×448×448 5011 20 1.46

This concern is exacerbated in MLCLL due to the presence of
noisy labels in non-complementary labels. As predictions of the
model progressively improve after some training epochs, strong
regularization would become more beneficial. Inspired by this, we
adopt a dynamic trade-off parameter to progressively strengthen
regularization in L̄(f(x), ȳ), that is,

L̄(f(x), ȳ) = L̄GDF(f(x), ȳ) + ψ(t)Φ(x, ȳ), (7)

where β is replaced by a dynamic parameter that varies with the
epoch number t, i.e.,

ψ(t) = min{ t
T ′
β, β}. (8)

This dynamic parameter assigns a small weight to the regu-
larization term in the initial epochs and progressively increases it
during the learning process. After the T ′-th epoch, the parameter
maintains a constant β until the end of training. The entire
procedure is outlined in Algorithm 1. Additionally, the theoretical
generalization bound of the proposed method, based on uniform
stability, is provided in Appendix A for completeness.

5 EXPERIMENTS

In this section, we conduct a series of experiments to verify
the performance of the proposed NMCB. We employ four MLL
criteria: ranking loss, one error, coverage, and average preci-
sion, to evaluate the effectiveness of the methods. A higher
value of average precision indicates superior performance, while
smaller values for the remaining criteria signify better perfor-
mance. Our experiments are implemented using PyTorch [46] and
NVIDIA RTX 3090 Ti. The code of this paper is available at
https://github.com/gaoyi439/NMCB.

5.1 Experimental Settings
Datasets & pre-processing. We employ 12 widely-used MLL
datasets for experiments1. Following previous work [35], [41],
[47], for datasets with more than 100 class labels, we filter out rare
labels to keep label spaces under 15 and remove instances without
relevant labels. Each instance is associated with one complemen-
tary label. Properties of each dataset are described through various
statistics, including the number of features dim(S), the number of
instances |S|, the number of labels L(S), and the average number
of labels per instance LCard(S). The detailed descriptions of
datasets are provided in Table 1.

1. Publicly available at https://mulan.sourceforge.net/datasets-mlc.html.
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TABLE 2: Experimental results (mean±std) on 12 datasets. The best performance for each dataset is shown in boldface, where •/◦ indicates
whether NMCB is superior/inferior to baselines with pairwise t-test (at the 0.05 significance level).

MLL PML CLL MLCLL
Method LIFT CCMN fpml PARD L-UW MAE GDF NMCB

Coverage↓

bookmark .328±.008• .398±.029• .474±.018• .287±.007• .219±.007 .318±.008• .221±.006 .218±.005
delicious .703±.004• .726±.014• .726±.009• .697±.014• .634±.006• .615±.006• .615±.007• .605±.007
mediamill .501±.023• .568±.067• .512±.034• .622±.117• .483±.033• .494±.034• .463±.023• .444±.023
eurlex dc .277±.011• .374±.006• .441±.035• .189±.059• .252±.014• .411±.008• .155±.005 .153±.005
eurlex sm .421±.012• .555±.008• .552±.031• .354±.014• .423±.008• .546±.007• .308±.008 .310±.006
tmc2007 .353±.022• .571±.069• .510±.013• .371±.029• .538±.009• .497±.009• .273±.013 .259±.013
rcv1-s1 .469±.031• .444±.022• .543±.023• .451±.064• .366±.043• .390±.038• .374±.048• .354±.048
rcv1-s2 .452±.040• .412±.027• .546±.020• .457±.055• .382±.036• .355±.010• .319±.019 .318±.019
rcv1-s3 .446±.038• .406±.055• .535±.031• .426±.099• .384±.021• .392±.033• .360±.056• .350±.056
rcv1-s4 .403±.064• .387±.060• .512±.042• .377±.094• .356±.047• .378±.033• .343±.084• .329±.084
rcv1-s5 .428±.019• .381±.049• .522±.035• .413±.058• .369±.017• .376±.036• .347±.041 .341±.039
VOC2007 - .456±.018• - - .507±.025• .530±.045• .377±.007 .370±.004

Ranking Loss↓

bookmark .310±.007• .387±.032• .468±.019• .265±.007• .196±.007 .301±.008• .196±.005 .194±.003
delicious .383±.003• .457±.013• .438±.008• .393±.014• .319±.005• .305±.004• .292±.005 .293±.005
mediamill .202±.015• .271±.038• .206±.019• .320±.090• .193±.020• .192±.019• .174±.013• .160±.011
eurlex dc .294±.012• .398±.007• .470±.037• .199±.063• .267±.015• .437±.008• .181±.005• .161±.006
eurlex sm .333±.013• .475±.007• .472±.034• .252±.011• .329±.005• .461±.006• .209±.006 .212±.006
tmc2007 .209±.046• .401±.040• .355±.028• .227±.031• .391±.020• .349±.024• .149±.032• .137±.032
rcv1-s1 .397±.023• .357±.017• .474±.019• .359±.073• .291±.028 .313±.027• .305±.055• .275±.055
rcv1-s2 .373±.026• .328±.033• .480±.024• .368±.062• .302±.021• .270±.018• .255±.019• .235±.019
rcv1-s3 .370±.018• .327±.048• .477±.019• .343±.084• .318±.038• .322±.058• .279±.042 .279±.042
rcv1-s4 .347±.041• .324±.042• .468±.024• .319±.078• .293±.024• .321±.016• .283±.067• .271±.067
rcv1-s5 .350±.020• .302±.027• .456±.017• .326±.057• .292±.034• .295±.020• .274±.063 .267±.058
VOC2007 - .382±.014• - - .460±.030• .467±.034• .311±.008• .303±.004

One Error ↓

bookmark .649±.015• .767±.050• .885±.019• .555±.012• .504±.008• .613±.011• .483±.007• .478±.006
delicious .533±.014• .618±.029• .617±.017• .542±.021• .482±.018• .467±.019• .426±.012 .426±.012
mediamill .187±.019• .249±.133• .188±.019• .309±.214• .188±.019• .188±.019• .184±.018• .174±.016
eurlex dc .759±.024• .924±.009• .920±.024• .509±.056• .609±.024• .906±.010• .459±.015• .457±.013
eurlex sm .674±.013• .852±.008• .868±.032• .511±.021• .552±.011• .834±.008• .400±.010 .415±.020
tmc2007 .465±.089• .556±.152• .695±.049• .486±.077• .788±.030• .717±.039• .359±.094• .329±.094
rcv1-s1 .855±.088• .667±.045• .875±.014• .662±.111• .718±.024• .698±.039• .685±.081• .652±.081
rcv1-s2 .858±.080 .675±.068 .873±.027• .626±.085 .751±.027• .669±.085 .681±.062• .671±.062
rcv1-s3 .838±.150• .662±.112 .879±.035• .587±.089◦ .768±.064• .721±.136• .715±.109 .695±.109
rcv1-s4 .918±.076• .656±.086 .894±.019• .634±.153 .703±.056• .716±.071• .674±.080• .648±.080
rcv1-s5 .810±.119• .724±.075• .865±.020• .627±.103 .741±.058• .684±.072• .681±.101• .668±.109
VOC2007 - .596±.000 - - .864±.071• .845±.074• .636±.000• .595±.000

Average Precision↑

bookmark .480±.010• .379±.030• .267±.018• .548±.007• .604±.005• .494±.008• .619±.006• .623±.004
delicious .511±.004• .453±.006• .457±.006• .504±.006• .554±.006• .567±.006• .586±.004 .586±.004
mediamill .710±.009• .643±.039• .709±.012• .588±.064• .717±.012• .715±.012• .732±.007• .748±.006
eurlex dc .429±.016• .260±.005• .240±.028• .614±.055• .525±.017• .267±.009• .656±.010 .658±.010
eurlex sm .425±.012• .284±.005• .285±.026• .543±.014• .475±.008• .288±.003• .623±.009 .615±.012
tmc2007 .535±.063• .367±.041• .353±.035• .524±.049• .303±.024• .351±.030• .652±.064• .672±.064
rcv1-s1 .319±.032• .417±.025• .274±.008• .422±.046• .428±.019• .424±.029• .451±.054• .471±.054
rcv1-s2 .321±.049• .440±.045• .276±.025• .447±.048• .412±.022• .469±.044• .478±.036• .488±.036
rcv1-s3 .356±.057• .441±.055• .270±.026• .465±.052 .399±.047• .418±.088• .460±.057 .460±.057
rcv1-s4 .329±.031• .448±.051• .264±.012• .452±.112• .445±.023• .419±.031• .485±.080 .489±.080
rcv1-s5 .372±.049• .437±.030• .283±.013• .460±.061• .425±.042• .452±.043• .463±.070• .471±.070
VOC2007 - .389±.011• - - .241±.031• .264±.037• .404±.002• .431±.001

Baselines. We compare NMCB with seven other methods and
provide a brief introduction to each, grouped by their respective
fields:

• MLL method: LIFT [5] and CCMN [48] were proposed
for MLL, which address MLCLL by treating all non-
complementary labels of instances as possible labels.

• PML method: We include two PML methods, fpml [37]
and PARD [47], as comparison methods, where (Y \ ȳ) is
regarded as candidate labels for learning.

• CLL method: L-UW [14] is a CLL method designed
for multi-class learning, which is adapted for MLCLL

by using the Sigmoid layer and BCE loss to replace the
Softmax layer and cross-entropy loss, respectively.

• MLCLL method: The comparison method, GDF [7], was
designed for the MCLL problem. Following Gao et al., we
modify the Mean Absolute Error (MAE) loss to make it
applicable for MCLL.

Setup. We utilize SGD with a momentum of 0.9 for optimization.
The batch size and number of training epochs are set to 256 and
200, respectively. Weight decay is 10−3 and the learning rate
is selected from {10−1, 10−2, 10−3}, where the learning rate is
multiplied by 0.1 at the 100-th and 150-th epochs [49]. The hyper-
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TABLE 3: Ablation study on six datasets. Results are described in the format of mean±std, where the best performance for each dataset is
shown in boldface.

Datasets bookmark mediamill tmc2007 rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5

One Error↓

NMCB .478±.006 .174±.016 .329±.094 .652±.081 .671±.062 .695±.109 .648±.080 .668±.109
NMCB w/o label correlation .488±.006 .183±.016 .335±.094 .672±.081 .681±.062 .712±.109 .660±.08 .669±.109
NMCB w/o mixup & label correlation .483±.007 .184±.018 .359±.094 .685±.081 .681±.062 .715±.109 .674±.080 .681±.101

Coverage↓

NMCB .218±.005 .444±.023 .259±.013 .354±.048 .318±.019 .350±.056 .329±.084 .341±.039
NMCB w/o label correlation .229±.004 .454±.023 .264±.013 .374±.048 .320±.019 .359±.056 .333±.084 .341±.039
NMCB w/o mixup & label correlation .221±.006 .463±.023 .273±.013 .374±.048 .319±.019 .360±.056 .343±.084 .347±.041

Ranking Loss↓

NMCB .194±.003 .160±.011 .137±.032 .275±.055 .235±.019 .279±.042 .271±.067 .267±.058
NMCB w/o label correlation .194±.003 .168±.011 .147±.032 .295±.055 .249±.019 .288±.042 .285±.067 .267±.058
NMCB w/o mixup & label correlation .196±.005 .174±.013 .149±.032 .305±.055 .255±.019 .279±.042 .283±.067 .274±.063

Average Precision↑

NMCB .623±.004 .748±.006 .672±.064 .471±.054 .488±.036 .460±.057 .489±.080 .471±.070
NMCB w/o label correlation .620±.004 .730±.006 .660±.064 .450±.054 .475±.036 .460±.057 .485±.080 .461±.071
NMCB w/o mixup & label correlation .619±.006 .732±.007 .652±.064 .451±.054 .478±.036 .460±.057 .485±.080 .463±.070

TABLE 4: Results of using proposed strategies on comparison methods. Results are described in the format of mean±std, where the best
performance for each dataset is shown in boldface.

Datasets bookmark delicious mediamill eurlex dc eurlex sm

One Error↓

NMCB .478±.006 .426±.012 .174±.016 .457±.013 .415±.020
NMCB w/ L-UW .781±.007 .481±.007 .192±.017 .916±.008 .858±.009
NMCB w/ MAE .696±.010 .466±.019 .190±.017 .910±.011 .834±.008
L-UW w/ mixup .806±.006 .513±.018 .301±.014 .924±.011 .912±.007
MAE w/ mixup .714±.009 .496±.018 .282±.015 .920±.011 .910±.007

Coverage↓

NMCB .218±.005 .605±.007 .444±.023 .153±.005 .310±.006
NMCB w/ L-UW .372±.005 .635±.006 .496±.027 .440±.007 .563±.008
NMCB w/ MAE .372±.008 .616±.006 .491±.031 .416±.007 .546±.007
L-UW w/ mixup .416±.004 .667±.006 .578±.025 .445±.007 .576±.009
MAE w/ mixup .392±.005 .643±.006 .558±.026 .431±.009 .574±.009

Ranking Loss↓

NMCB .194±.003 .293±.005 .160±.011 .161±.006 .212±.006
NMCB w/ L-UW .359±.005 .318±.005 .200±.018 .469±.007 .479±.006
NMCB w/ MAE .358±.008 .305±.004 .196±.020 .442±.008 .461±.006
L-UW w/ mixup .405±.005 .345±.006 .243±.010 .474±.008 .507±.007
MAE w/ mixup .380±.005 .326±.005 .224±.011 .460±.009 .505±.007

Average Precision↑

NMCB .623±.004 .586±.004 .748±.006 .658±.010 .615±.012
NMCB w/ L-UW .373±.006 .555±.006 .712±.010 .245±.008 .274±.002
NMCB w/ MAE .424±.007 .567±.006 .714±.011 .264±.009 .288±.003
L-UW w/ mixup .340±.004 .531±.007 .663±.007 .237±.009 .245±.006
MAE w/ mixup .404±.006 .545±.006 .683±.007 .249±.010 .247±.005

parameters in Eq. (8) are set as T ′ = 100 and β = 1, with a
mixing level of α = 0.9. The label correlation extraction model is
a linear model. As the VOC2007 dataset consists of color images
with a size of 3×448×448, we employ an 18-layer ResNet as the
classification model. For other datasets, a linear model is adopted.
The methods are evaluated over 5 trials on the VOC2007 dataset,
while the remaining datasets employ ten-fold cross-validation.
During the learning process, the training data includes only com-
plementary labels and the test data associated with relevant labels
is used for evaluation. Mean and standard deviation (std) of four
criteria are reported, where ↓ / ↑ indicates that a smaller/higher

criterion value signifies better method performance.

5.2 Empirical Results
Table 2 presents the results of four criteria for various methods
across 12 datasets, where results of LIFT, fpml and PARD are
marked as “-” on the VOC2007 dataset since they cannot di-
rectly handle raw image data. As depicted in Table 2, NMCB
outperforms most methods across the 12 datasets. Specifically,
we observe performance enhancements over the best baseline on
tmc2007, with improvements of 0.03 and 0.02 on the one error
and average precision, respectively. This indicates the effective-
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TABLE 5: Results (mean±std) with different trade-off parameter β. The best performance for each dataset is highlighted in boldface, where
•/◦ indicates whether NMCB is superior/inferior to other results with Wilcoxon signed-rank test (at the 0.05 significant level). “Fixed” means
that the value of the trade-off parameter β remains constant from the beginning to the end of the training, while “Dynamic” denotes that β
follows the dynamic trade-off parameter strategy, shown in Eq. (8).

β
Fixed Dynamic

0.1 0 .3 0 .5 0.8 1 1

One Error↓

bookmark .483±.006 .486±.006• .481±.006 .487±.006• .485±.005 .478±.006
delicious .466±.012• .444±.011 .438±.013• .464±.012• .449±.013• .426±.012
mediamill .210±.016 .202±.016 .206±.013 .207±.016 .207±.016 .174±.016
eurlex dc .476±.016• .478±.013 .473±.018 .464±.013 .462±.014 .457±.013
eurlex sm .410±.018 .420±.028 .415±.020 .417±.027 .434±.018• .415±.020
tmc2007 .334±.094 .348±.094 .347±.094 .311±.094◦ .321±.094 .329±.094

Coverage↓

bookmark .213±.004 .213±.004 .217±.004 .213±.005 .213±.005 .218±.005
delicious .625±.007• .618±.007• .608±.007 .626±.007• .621±.007• .605±.007
mediamill .458±.023• .429±.023◦ .443±.023 .446±.023 .450±.023 .444±.023
eurlex dc .158±.004 .155±.005• .160±.004 .163±.005• .158±.005 .153±.005
eurlex sm .315±.009 .317±.011• .315±.008 .309±.008 .326±.008 .310±.006
tmc2007 .315±.013 .321±.013• .320±.013• .303±.013• .308±.013• .259±.013

Ranking Loss↓

bookmark .191±.003 .191±.003 .195±.003• .191±.003 .198±.003 .194±.003
delicious .316±.005 .306±.005 .295±.005 .317±.005 .310±.005 .293±.005
mediamill .172±.011 .154±.011 .162±.011 .164±.011• .166±.010• .160±.011
eurlex dc .166±.004 .163±.006• .168±.004 .171±.005• .165±.005 .161±.006
eurlex sm .214±.007 .215±.012 .215±.008 .222±.008• .226±.007 .212±.006
tmc2007 .163±.032• .168±.032• .167±.032• .152±.032• .156±.033• .137±.032

Average Precision↑

bookmark .620±.004 .619±.004 .619±.004• .618±.004• .615±.004• .623±.004
delicious .561±.004• .571±.004• .579±.004• .560±.004• .567±.004• .586±.004
mediamill .733±.006 .750±.006◦ .743±.006 .741±.006 .739±.006 .748±.006
eurlex dc .646±.011 .646±.011• .644±.012• .644±.009 .652±.010 .658±.010
eurlex sm .615±.012 .611±.019 .611±.014 .602±.015• .599±.012 .615±.012
tmc2007 .639±.064 .628±.064• .630±.064• .660±.064• .652±.065• .672±.064

ness of our method, NMCB, in solving the MLCLL problem.
Furthermore, NMCB surpasses LIFT and CCMN on four criteria
across all datasets, which demonstrates its suitability over MLL
methods for solving the MLCLL problem. Compared with PML
methods, the average precision of NMCB is 0.418 higher than that
of fpml on the eurlex dc dataset, which indicates the effectiveness
of NMCB in MLCLL scenarios with dense noisy labels.

As evident in Table 2, NMCB outperforms L-UW across all
datasets, which suggests that CLL methods may not adequately
tackle the challenges posed by the MLCLL problem. This limita-
tion arises from their reliance on the assumption of one relevant
label per instance, while the actual number of relevant labels
per instance remains unknown in MLL. This lack of informa-
tion hinders CLL methods from capturing relationships among
multiple relevant labels and complementary labels in the prob-
lem of MLCLL. Additionally, our method achieves comparable
performance with state-of-the-art MLCLL methods, which proves
the effectiveness of a tailored version of mixup to reduce the
sensitivity of the model on noisy labels and achieve smoother
decision boundaries. Moreover, this also demonstrates that the
strategy of using consistency regularization to emphasize the
alignment of the model’s outputs with label correlations positively
contributes to improving the performance of NMCB.

5.3 Ablation Studies
The effect of proposed strategies. To validate the contributions
of the two main strategies of NMCB, namely the mixup strategy

to alleviate the problem of density noisy labels in MLCLL and
the label correlation extraction model to automatically explore
relationships among labels, we compare NMCB with two vari-
ants: (1) NMCB w/o label correlation: This variant removes the
label correlation extraction model from NMCB, which uses the
loss L̄(f(x), ȳ) = L̄GDF(f(x), ȳ) + ψ(t)‖f(x′) − ŷ′‖22 to
learn from complementary labeled data. (2) NMCB w/o mixup &
label correlation: This variant removes both the mixup and label
correlation strategies proposed by us, which only adopts the GDF
loss to train a classifier (i.e., this variant will become GDF). These
variants allow us to isolate and evaluate the individual impacts of
the mixup strategy and the label correlation extraction model on
the overall performance of NMCB.

From Table 3, our proposed method outperforms the two
variants in most cases. Specifically, NMCB achieves comparable
or superior performance compared to variant (1) across all settings.
In variant (1), using the non-complementary label vector ŷ′ in
mixup to replace the label correlation vector c(ŷ′) leads to
performance differences. This indicates that label correlations are
effective in making the alignment objective in the regularization
term clearer, and encourage the classification model to consider
label correlations during the learning process. Moreover, the
results of variant (2) on four criteria across all datasets are inferior
to those of variant (1), which demonstrates that the mixup strategy
effectively alleviates the problem of noisy labels in the MLCLL
scenario and further enhances the model’s performance.



9

TABLE 6: Results (mean±std) with various mixing levels α. The best performance for each dataset is shown in boldface.

α 0.2 0.4 0.6 0.9 1

One Error↓

bookmark .481±.006 .480±.006 .480±.006 .478±.006 .479±.006
delicious .427±.013 .426±.013 .434±.012 .426±.012 .434±.012
mediamill .189±.016 .189±.016 .187±.016 .174±.016 .174±.016
eurlex dc .459±.014 .458±.016 .458±.013 .457±.013 .457±.015
eurlex sm .417±.017 .415±.019 .405±.019 .415±.020 .425±.016
tmc2007 .322±.094 .320±.094 .317±.094 .329±.094 .338±.094

Coverage↓

bookmark .221±.005 .221±.005 .221±.005 .218±.005 .221±.005
delicious .614±.007 .614±.007 .613±.007 .605±.007 .612±.007
mediamill .484±.023 .484±.023 .430±.023 .444±.023 .445±.023
eurlex dc .154±.005 .153±.005 .152±.005 .153±.005 .155±.007
eurlex sm .310±.008 .310±.009 .308±.009 .310±.006 .299±.010
tmc2007 .276±.013 .274±.013 .272±.013 .259±.013 .261±.013

Ranking Loss↓

bookmark .195±.003 .195±.003 .195±.003 .194±.003 .195±.003
delicious .303±.005 .303±.005 .302±.005 .293±.005 .300±.005
mediamill .178±.011 .178±.011 .150±.011 .160±.011 .160±.011
eurlex dc .162±.005 .161±.005 .160±.005 .161±.006 .163±.007
eurlex sm .213±.007 .212±.008 .210±.007 .212±.006 .229±.008
tmc2007 .143±.032 .142±.032 .140±.032 .137±.032 .137±.032

Average Precision↑

bookmark .621±.004 .621±.004 .621±.004 .623±.004 .621±.004
delicious .577±.004 .577±.004 .578±.004 .586±.004 .579±.004
mediamill .737±.006 .737±.006 .752±.006 .748±.006 .748±.006
eurlex dc .657±.010 .657±.012 .658±.010 .658±.010 .657±.011
eurlex sm .613±.011 .613±.013 .621±.013 .615±.012 .608±.012
tmc2007 .661±.064 .664±.064 .668±.064 .672±.064 .670±.064

(a) CCMN (b) GDF (c) NMCB

Fig. 3: Decision Boundaries for various classifiers trained with different methods based on a toy dataset. This toy dataset consists of three
different classes (see Appendix B.2 for details).

Extended comparison. To further validate the effectiveness of the
proposed method NMCB, we design four variants by decomposing
and reassembling its core components into existing MLCLL meth-
ods. Specifically, we consider the following settings: (a) NMCB
w/ L-UW: Replacing the GDF loss in NMCB with L-UW. (b)
NMCB w/ MAE: Replacing GDF with MAE (i.e., the revised MAE
loss introduced in the baselines). (c) L-UW w/ mixup: Applying
only the tailored mixup strategy to L-UW. (d) MAE w/ mixup:
Applying only the tailored mixup strategy to MAE. As shown in
Table 4, variants (a) and (b) outperform (c) and (d), respectively,
which illustrates that the proposed consistency regularization term
contributes positively to performance improvements. Moreover,

NMCB consistently achieves the best results across all settings,
which indicates that the GDF loss is particularly well-aligned
with our framework. These findings highlight the importance of
the coordinated integration of mixup, label correlation extraction,
and consistency regularization within NMCB, which work syner-
gistically to effectively address the challenges of MLCLL.

5.4 Effect of NMCB with Different Parameters

Different trade-off parameter. Here, we investigate the impact
of varying the trade-off parameter on NMCB performance, and
the results of NMCB with different β values are reported in
Table 5. In the Table 5, “Fixed” means that the value of the
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TABLE 7: Results (mean±std) with varying layer depths in the
extraction model.

Datasets Label correlation extraction model

w/ 1-layer w/ 2-layer w/ 3-layer

One Error↓

bookmark .478±.006 .478±.006 .478±.005
delicious .426±.012 .426±.013 .426±.012
mediamill .174±.016 .174±.016 .174±.016
eurlex dc .457±.013 .457±.015 .456±.013
eurlex sm .415±.020 .406±.020 .413±.025

Coverage↓

bookmark .218±.005 .218±.004 .218±.005
delicious .605±.007 .605±.007 .605±.007
mediamill .444±.023 .444±.023 .444±.023
eurlex dc .153±.005 .154±.005 .155±.007
eurlex sm .310±.006 .309±.008 .309±.011

Ranking Loss↓

bookmark .194±.003 .194±.003 .195±.003
delicious .293±.005 .293±.005 .293±.005
mediamill .160±.011 .160±.011 .160±.011
eurlex dc .161±.006 .162±.005 .163±.007
eurlex sm .212±.006 .210±.007 .211±.01

Average Precision↑

bookmark .623±.004 .623±.004 .623±.004
delicious .586±.004 .586±.004 .586±.004
mediamill .748±.006 .748±.006 .748±.006
eurlex dc .658±.010 .657±.011 .657±.011
eurlex sm .615±.012 .619±.014 .615±.019

trade-off parameter β remains constant from the beginning to the
end of the training, while “Dynamic” denotes that β follows the
dynamic trade-off parameter strategy (shown in Eq. (8)). For the
“Fixed” experimental part, we provide five different values of β
chosen from the set {0.1, 0.3, 0.5, 0.8, 1}. Observing the results,
we find that the best performance over all four criteria is achieved
with dynamic trade-off parameter β on almost six datasets. This
suggests that progressively strengthening the regularization imple-
mented by the dynamic trade-off parameter strategy is effective
in improving model performance. From the results of the fixed β,
whether the strength of regularization is kept consistently small or
large during the learning process, the benefits for model learning
are not as pronounced. While the dynamic strategy does not
always yield statistically significant improvements, it demonstrates
more robust performance overall by eliminating the need for
manual tuning of the trade-off parameter β.
Mixing level α. We subsequently delve into an analysis of the
impact of varying mixing levels, denoted by the parameter α,
on our proposed method NMCB across four criteria. Here, we
adopt the dynamic trade-off parameter for the regularization term
in experiments (shown as Eq. (7)). Our investigation contains
six diverse datasets, with mixing levels set at 0.2, 0.4, 0.6, and
0.9, respectively. The experimental results, as detailed in Table 6,
reveal that criteria such as one error, coverage, ranking loss,
and average precision display slightly superior performance at
a mixing level of 0.9 compared to other α values. Despite this
marginal discrepancy, it is noteworthy that the differences in
results across varying α values are not substantial. This observa-
tion demonstrates the robustness of our proposed method, which
indicates its ability to maintain consistent performance even in
the face of parameter variations. Consequently, we adopt a mixing

level of α = 0.9 as the standard configuration for our experiments,
as it showcases commendable performance.
Layer depth in label correlation extraction model. To inves-
tigate the impact of model depth on label correlation extraction,
we compare the original architecture used in Eq. (4) with deeper
variants incorporating two and three fully connected layers. The
two-layer variant consists of a linear layer followed by a ReLU
activation with 1000 units, whereas the three-layer variant adds
another linear-ReLU block. All versions are trained with the
same experimental settings and a linear model for prediction.
The results, reported in Table 7, indicate that increasing model
depth does not consistently improve performance. In most cases,
the one-layer model performs comparably to the deeper models
on all datasets across various metrics. These findings empirically
support our choice of using a linear model for label correlation
extraction in the proposed NMCB framework. The linear extractor
is simple and computationally efficient, while remaining effective
in capturing the pairwise correlations essential for MLL.

5.5 Exploration of Decision Boundaries
To further explore the sensitivity and robustness of different
methods to noisy labels, we design a classification task with
three possible labels to closely examine and visualize the de-
cision boundaries produced by each method. For this task, we
generate a toy dataset with 2-dimensional features, where the
training data is annotated with complementary labels, and the
test data is associated with the relevant labels. To ensure a fair
and direct comparison, we adopt the same settings for both our
method (NMCB) and the baselines, CCMN and GDF. Detailed
experimental setups and parameter configurations are provided in
Appendix B.2.

As illustrated in Fig. 3, the decision boundaries of NMCB
are smoother than those generated by other baseline methods,
demonstrating that our method is less sensitive to noisy labels.
The improved smoothness in decision boundaries suggests that
NMCB effectively mitigates the disruptive impact of noisy labels
on the learning process. By contrast, the less smooth boundaries
observed in the previous methods indicate suboptimal perfor-
mance when handling noisy labels, which compromises their
generalization capabilities. These results emphasize the robustness
of our proposed method, which not only demonstrates enhanced
resilience to label noise but also delivers superior generalization
performance compared to both CCMN and GDF. Specifically, our
method surpasses GDF in achieving smoother and more accurate
decision boundaries, an advantage attributed to our innovative
strategy of consistency regularization with label correlations on
data augment transformed by a tailored version of mixup, as
outlined in Eq. (5). This approach enforces stronger consistency
across labels, promoting robustness by encouraging the model
to learn shared label structures, thereby improving classification
performance in the presence of noise.

6 CONCLUSION

Due to the memorization effect of neural networks and the pres-
ence of noisy labels in MLCLL, previous methods may fit noisy
labels and lead to a sharp decision boundary. In this paper, we
propose a novel framework called NMCB to solve the MLCLL
problem. To alleviate the impact of noise, NMCB pioneers a
tailored version of mixup for MLCLL to aid in achieving a
smoother decision boundary, which helps reduce sensitivity to
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noisy labels and improve generalization performance. Since non-
complementary labels transformed by the tailored version of
mixup exhibit smoother characteristics, NMCB employs a model
to automatically extract label correlations from these labels to
avoid distortion in the label relationships of MLCLL caused
by noisy labels. Accordingly, NMCB introduces a consistency
regularization term that aligns the model’s output with the ex-
tracted label correlations, further improving performance. We also
establish a generalization bound for our method theoretically.
Empirical studies demonstrate the effectiveness of the proposed
method.

While the proposed NMCB framework demonstrates its effec-
tiveness across various domains, the mixup strategy is inherently
better suited to continuous input spaces (e.g., images), where
convex combinations preserve semantic meaning. For discrete
domains like natural language processing, directly applying mixup
to raw discrete inputs (e.g., word sequences) may lead to se-
mantically invalid data. In our work, although some datasets
originate from the textual domain, all textual data are preprocessed
into numerical vector representations, which makes our method
feasible. Nevertheless, this reliance on feature-level representa-
tions may limit NMCB’s use in tasks requiring raw discrete
input processing. Future work could explore mixup-compatible
augmentation strategies tailored for discrete domains to broaden
its applicability.
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APPENDIX A
THEORETICAL ANALYSIS: GENERALIZATION BOUND

Generalization refers to a model’s ability to perform well on unseen instances. Here, we establish a generalization bound for the proposed
method based on uniform stability to investigate the generalization of NMCB. Let the expected risk of MLCLL in L̄ over p̄(x, ȳ) be
denoted as R̄(f) = Ep̄(x,ȳ)[L̄(f(x), ȳ)], which usually is approximated by its empirical risk R̄n(f) = 1

n

∑n
i=1 L̄(f(xi), ȳi). Here,

D̄i,z̄′
represents the dataset obtained by replacing the i-th instance z̄i = (xi, ȳi) in D̄ with z̄′ = (x′, ȳ′). We start investigating a

generalization bound in Theorem 1 based on Definition 1.

Definition 1. (Uniform Stability) For D̄ and z̄ = (x, ȳ), z̄′ = (x′, ȳ′) ∈ X ×Y , the learning method is uniform stability with respect
to L̄(x, ȳ) if there exists ξ ≥ 0 such that the following conditions hold:

|L̄(fD̄, z̄)− L̄(fD̄i,z̄′ , z̄)| ≤ ξ,

where L̄(fD̄, z̄) = L̄(fD̄(x), ȳ) and L̄(fD̄i,z̄′ , z̄) = L̄(fD̄i,z̄′ (x), ȳ), in which fD̄ and fD̄i,z̄′ refer to multi-labeled classifiers
trained from D̄ and D̄i,z̄′

, respectively.

This definition is valid since L̄GDF has an upper bound according to [7], and 0 ≤ Φ(x, ȳ) ≤ K . Building upon this definition, we
derive a generalization bound for our method in Theorem 1. Before stating the theorem, we first justify the assumption of the upper
bound constant M = supz∈X×Y L̄(fD̄, z̄), which ensures the validity of Theorem 1. Specifically, the model outputs f(·) are passed
through a Sigmoid layer and constrained within [ε, 1− ε] (e.g., ε = 10−6) for numerical stability. This bounds each term in the GDF
loss by log(1/ε), and the total GDF loss across K classes satisfies:

L̄GDF ≤ K · log(1/ε).

As f(x′), c(ŷ′) ∈ [0, 1]K , we have Φ(x, ȳ) ≤ K . Therefore, the total loss satisfies M ≤ K · log(1/ε)+K , which is independent
of n. This upper bound ensures that the constant M is finite, and it generally holds in practice when using standard neural network
architectures with output constraints (e.g., Sigmoid activations) and numerically stabilized loss functions.

Theorem 1. Suppose M = supz∈X×Y L̄(fD̄, z̄) and the learning method is uniform stability with respect to L̄(x, ȳ). For any
δ ∈ (0, 1), with a probability at least 1− δ, the following bound holds:

R̄(fD̄)− R̄n(fD̄) ≤ ξ + (2nξ +M)

√
ln(1/δ)

2n
.

Proof. Let Υ (D̄) = R̄(fD̄)− R̄n(fD̄). For any i ∈ [n] = {1, 2, . . . , n}, we have

ED̄[Υ (D̄)] = ED̄[R̄(fD̄)− R̄n(fD̄)]

= ED̄[R̄(fD̄)]− ED̄[R̄n(fD̄)]

= ED̄,z̄[L̄(fD̄, z̄)]− 1

n

n∑
j=1

ED̄[L̄(fD̄, z̄j)]

= ED̄,z̄′
i
[L̄(fD̄, z̄

′
i)]− ED̄[L̄(fD̄, z̄i)]

= ED̄,z̄′
i
[L̄(fD̄, z̄

′
i)]− ED̄,z̄′

i
[L̄(f

D̄i,z̄′
i
, z̄′i)] (z̄i is replaced by z̄′i)

= ED̄,z̄′
i
[L̄(fD̄, z̄

′
i)− L̄(f

D̄i,z̄′
i
, z̄′i)] ≤ ξ. (According to Definition 1)

Given z̄′i ∈ X × Y , the following equation satisfies∣∣∣Υ (D̄)− Υ (D̄i,z̄′
i)
∣∣∣ =

∣∣∣R̄(fD̄)− R̄n(fD̄)− R̄(f
D̄i,z̄′

i
) + R̄n(f

D̄i,z̄′
i
)
∣∣∣

≤
∣∣∣R̄(fD̄)− R̄(f

D̄i,z̄′
i
)
∣∣∣+

∣∣∣R̄n(f
D̄i,z̄′

i
)− R̄n(fD̄)

∣∣∣ .
Due to the learning method has uniform stability, the above inequality can be further solved. For

∣∣∣R̄(fD̄)− R̄(f
D̄i,z̄′

i
)
∣∣∣, we can

obtain ∣∣∣R̄(fD̄)− R̄(f
D̄i,z̄′

i
)
∣∣∣ =

∣∣∣Ez̄∼p̄(x,ȳ)

[
L̄(fD̄, z̄)

]
− Ez̄∼p̄(x,ȳ)

[
L̄(f

D̄i,z̄′
i
, z̄)
]∣∣∣

=
∣∣∣Ez̄∼p̄(x,ȳ)

[
L̄(fD̄, z̄)− L̄(f

D̄i,z̄′
i
, z̄)
]∣∣∣ ≤ ξ.

Similarly, we have∣∣∣R̄n(f
D̄i,z̄′

i
)− R̄n(fD̄)

∣∣∣ =

∣∣∣∣∣∣ 1n


n∑
j=1,j 6=i

∣∣∣L̄(fD̄, z̄j)− L̄(f
D̄i,z̄′

i
, z̄j)

∣∣∣+
∣∣∣L̄(fD̄, z̄i)− L̄(f

D̄i,z̄′
i
, z̄′i)

∣∣∣

∣∣∣∣∣∣

≤

∣∣∣L̄(fD̄, z̄i)− L̄(f
D̄i,z̄′

i
, z̄′i)

∣∣∣
n

+
n∑

j=1,j 6=i

∣∣∣L̄(fD̄, z̄j)− L̄(f
D̄i,z̄′

i
, z̄j)

∣∣∣
n
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≤ M

n
+ ξ.

Based on these two inequalities, we have ∣∣∣Υ (D̄)− Υ (D̄i,z̄′
i)
∣∣∣ ≤ 2ξ +

M

n
.

By applying McDiarmid’s inequality to Υ (D̄), for any ε > 0, we obtain

P
(
R̄n(f

D̄i,z̄′
i
)− R̄n(fD̄) ≥ ξ + ε

)
= P

(
Υ (D̄) ≥ ξ + ε

)
≤ P

(
Υ (D̄) ≥ E[Υ (D̄)] + ε

)
≤ exp

( −2nε2

(2nξ +M)2

)
,

let δ = exp
(
−2nε2

(2nξ+M)2

)
, then ε = (2nξ +M)

√
ln(1/δ)

2n . Finally, for any δ > 0, with the probability at least 1− δ, we have

R̄n(f
D̄i,z̄′

i
)− R̄n(fD̄) ≤ ξ + (2nξ +M)

√
ln(1/δ)

2n
.

Theorem 1 shows that the proposed method possesses a generalization bound based on uniform stability with replacing instances,
and the convergence rate is O(

√
n).

APPENDIX B
ADDITIONAL EXPERIMENTS

B.1 Effects of Different Regularization Methods

Due to its simplicity and smoothness, MSE is adopted as the regularization method in the consistency term (Eq. (5)) to align model
outputs for augmented instances with the extracted label correlations in our framework. To further examine this choice, we conducted
additional experiments with two alternatives in Eq. (5): MAE loss and Kullback–Leibler (KL) divergence. The results in Table 8 show
that “NMCB w/ MAE” and “NMCB w/ KL” generally underperform the MSE-based variant. The weaker performance of MAE may
stem from its sparser gradients, which can slow convergence, while KL divergence is sensitive to small probabilities and inherently
asymmetric, potentially causing instability. Overall, these findings validate MSE as a balanced and robust regularization method for
MLCLL.

TABLE 8: Results (mean±std) with different regularization methods.

Datasets bookmark delicious mediamill eurlex dc eurlex sm

One Error↓

NMCB .478±.006 .426±.012 .174±.016 .457±.013 .415±.020
NMCB w/ MAE .487±.005 .438±.013 .204±.016 .450±.014 .436±.022
NMCB w/ KL .481±.005 .432±.013 .203±.015 .453±.013 .412±.019

Coverage↓

NMCB .218±.005 .605±.007 .444±.023 .153±.005 .310±.006
NMCB w/ MAE .228±.005 .613±.007 .447±.024 .153±.004 .314±.010
NMCB w/ KL .227±.004 .616±.007 .452±.023 .155±.004 .316±.007

Ranking Loss↓

NMCB .194±.003 .293±.005 .160±.011 .161±.006 .212±.006
NMCB w/ MAE .195±.003 .296±.005 .161±.011 .167±.004 .213±.010
NMCB w/ KL .192±.002 .295±.005 .169±.010 .162±.004 .217±.007

Average Precision↑

NMCB .623±.004 .586±.004 .748±.006 .658±.010 .615±.012
NMCB w/ MAE .615±.004 .581±.004 .747±.007 .650±.010 .619±.017
NMCB w/ KL .622±.004 .580±.004 .745±.006 .650±.010 .615±.011
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B.2 Illustration of the Effect on Toy Dataset
We employ a 2-dimensional dataset consisting of three concentric circles to explore the effect of different methods on noisy labels.
Each circle’s data points share the same label. We generate a total of 600 instances, which are divided into two parts: training data and
test data. Specifically, 400 instances associated with complementary labels are used for training, while 200 instances equipped with
relevant labels are used for testing. During data generation, we set scale factors between the inner circle, middle circle, and outer circle
to 0.2 and 0.65 respectively. At the same time, we add Gaussian noise with zero mean and standard deviation of 0.2 to instances. Fig. 4
shows the training data and test data. For all methods, we regard a fully connected neural network composed by four layers with the
ReLU activation functions as the predictive model. SGD with momentum 0.9 is used for optimization. Weight decay and learning rate
are set as 10−3 and 10−1, respectively.

(a) Training dataset (b) Test dataset

Fig. 4: The toy dataset we used to explore decision boundaries.
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