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Abstract
Complementary-label learning (CLL) deals with
the weak supervision scenario where each train-
ing instance is associated with one complemen-
tary label, which specifies the class label that
the instance does not belong to. Given the train-
ing instance x, existing CLL approaches aim at
modeling the generative relationship between the
complementary label ȳ, i.e. P (ȳ | x), and the
ground-truth label y, i.e. P (y | x). Nonetheless,
as the ground-truth label is not directly accessi-
ble for complementarily labeled training instance,
strong generative assumptions may not hold for
real-world CLL tasks. In this paper, we derive
a simple and theoretically-sound discriminative
model towards P (ȳ | x), which naturally leads
to a risk estimator with estimation error bound at
O(1/

√
n) convergence rate. Accordingly, a prac-

tical CLL approach is proposed by further intro-
ducing weighted loss to the empirical risk to maxi-
mize the predictive gap between potential ground-
truth label and complementary label. Extensive
experiments clearly validate the effectiveness of
the proposed discriminative complementary-label
learning approach.

1. Introduction
Ordinary classification tasks generally require vast data with
high-quality labels, while accurately annotating large-scale
datasets is costly and time-consuming. The weakly super-
vised learning (WSL) paradigm has brought a new inspira-
tion to alleviate this problem, which allows learning algo-
rithms to train classifiers with less expensive data (Zhou,
2017; Ishida et al., 2017). The researchers have studied
various frameworks based on weak supervision informa-
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tion, including but not limited to, semi-supervised learning
(Chapelle et al., 2006; Oliver et al., 2018; Calder et al.,
2020; Izmailov et al., 2020), noisy-label learning (Ghosh
et al., 2017; Zhang & Sabuncu, 2018; Ma et al., 2018; Kim
et al., 2019; Liu & Guo, 2020; Han et al., 2020), positive-
unlabeled learning (du Plessis et al., 2014; Sakai et al.,
2018; Chapel et al., 2020; Hammoudeh & Lowd, 2020; Su
et al., 2021), unlabeled-unlabeled learning (Lu et al., 2019;
Golovnev et al., 2019) and partial label learning (Wu &
Zhang, 2019; Lv et al., 2020).

Here, we consider another natural scenario of WSL –
complementary-label learning (CLL) (Ishida et al., 2017;
Yu et al., 2018; Ishida et al., 2019; Xu et al., 2020; Chou
et al., 2020; Feng et al., 2020) – the class label speci-
fies one of the classes that the instance does not belong
to, while the learned classifier is expected to predict the
ground-truth label of each instance. Collection of data
with complementary labels is obviously much easier and
less time-consuming than that of ordinary labels. To solve
the CLL problem, previous approaches mainly focus on
assuming the generative relationship between the comple-
mentary label ȳ and the ground-truth label y of each in-
stance, which could be roughly divided into two categories:
the first category assumes that the relationship between ȳ
and y is unbiased based on an uniform distribution, i.e.
P (Ȳ = ȳ | X = x) = 1

c−1

∑
y 6=ȳ P (Y = y | X = x)

(c refers to the number of classes) (Ishida et al., 2017;
2019; Feng et al., 2020), while the second one assumes
that the relationship is biased, i.e. P (Ȳ = ȳ | X = x) =∑
y 6=ȳ P (Ȳ = ȳ | Y = y)P (Y = y | X = x) (Yu et al.,

2018; Xu et al., 2020).

As a pioneering work, the approach proposed by Ishida et al.
(2017) designed an unbiased risk estimator (URE) with a
solid theoretical analysis according to the assumption of
the first category, which enables multi-class classification
with only complementary labels. However, this approach
only works with a limited group of loss functions, i.e., the
one-versus-all (OVA) and the pairwise comparison (PC) loss
functions (Zhang, 2004). With the same unbiased gener-
ation assumption, Ishida et al. (2019) proposed a general
URE framework of complementary-label learning, which
is unrestricted in models and loss functions. Nonetheless,
these URE-based approaches in CLL may suffer from over-
fitting, as the empirical gradients may deviate from true
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gradients during the optimization procedure (Chou et al.,
2020).

Unlike previous studies, Yu et al. (2018) take the assumption
that a biased relationship exists between the complementary
label ȳ and the ground-truth label y which is modeled by the
transition probability, i.e. P (Ȳ = ȳ | Y = y),∀ȳ 6= y ∈
{1, . . . , c}. Their approach makes the widely-used multi-
class Cross-Entropy (CE) loss be amenable for solving CLL
tasks. Subsequently, Xu et al. (2020) applied Conditional
Generative Adversarial Net (CGAN) (Goodfellow et al.,
2014; Mirza & Osindero, 2014) based on the same biased
assumption to improve the classification accuracy of CLL.
However, this method requires extra conditions to be satis-
fied such as the availability of a set of anchor instances to
enable transition probability estimation, which may not be
satisfied in reality.

Overall, existing approaches rely on modeling the genera-
tive relationship between the complementary label and the
ground-truth label of each training instance. Nevertheless,
the ground-truth label is unknown for CLL training exam-
ples such that these strong generative assumption may be not
suitable for solving real-world CLL problem. To tackle this
problem, we propose a discriminative solution to directly
model P (ȳ | x) from the output of trained classifiers, which
naturally leads to a novel CLL risk estimator. Specifically,
a weighted loss is introduced to the empirical risk yielding
a practical discriminative CLL approach. Experimental re-
sults on benchmark datasets demonstrate the effectiveness
of the proposed discriminative CLL approach. The main
contributions are summarized as follows:

(1) We directly model P (ȳ | x) from the predictive proba-
bility of learned classifiers in a simple yet effective manner.
Correspondingly, we derive a risk estimator with guaranteed
estimation error bound at O(1/

√
n) convergence rate.

(2) A practical CLL approach is proposed by introducing
weighted loss to enforce predictive gap between potential
ground-truth label and complementary label.

The rest of this paper is organized as follows. Section 2 gives
formal definitions and briefly reviews existing approaches
to CLL. Section 3 presents the proposed discriminative CLL
approach with theoretical analyses and algorithmic details.
Section 4 reports the results of comparative experimental
studies. Finally, Section 5 concludes this paper.

2. Background and Formulation
In this section, we give notations used in this paper,
and briefly discuss ordinary multi-class classification and
complementary-label learning.

2.1. Ordinary Multi-Class Classification
In ordinary multi-class classification, let X ⊂ Rd be the
feature space and Y = {1, . . . , c} be the label space, where

c is the number of classes and c ≥ 2. Let p(x, y) be the un-
known probability density function over random variables
(X,Y ) ∈ X × Y , and D = {(xi, yi)}ni=1 be a set of n
training examples each associated with a ground-truth la-
bel. Ordinary multi-class classification tasks aim to learn a
classifier that maps from the feature space to the label space
f : X → Rc, which is trained by minimizing the following
classification risk:

R(f) = E(X,Y )∼p(x,y)

[
`(f(X), eY )

]
(1)

where eY ∈ {0, 1}c is the one-hot encoded label of X , and
the Y -th element of eY is one with all other elements being
zero. E and ` denote the expectation and the loss function,
respectively. Accordingly, the most possible predicted label
ŷ of an instance x is determined as

ŷ = argmax
k∈Y

fk(x) (2)

where fk(·) denotes the k-th element of f(·), referring to the
posterior probability of the k-th label being the ground-truth
one, i.e., fk(X) = P (Y = k|X). The optimal classifier f∗

in function class F corresponds to the minimizer of clas-
sification risk R(f): f∗ = argminf∈FR(f). As the un-
derlying distribution p(x, y) is unknown, the classification
risk in Eq.(1) is usually approximated by the empirical risk
Rn(f), i.e. Rn(f) = 1

n

∑n
i=1 `(f(xi), e

yi). Similarly, the
optimal classifier w.r.t. the empirical risk corresponds to:
fn = argminf∈FRn(f).

2.2. Complementary-Label Learning

Different from ordinary multi-class classification, each in-
stance only has one complementary label in CLL. Let
D̄ = {(xi, ȳi)}ni=1 denote the set of complementarily la-
beled training examples, where ȳi ∈ Y \ {yi} is the comple-
mentary label of the instance xi and each example is sam-
pled from p̄(x, ȳ) which denotes an unknown probability
distribution. As discussed in Section 1, existing approaches
generally aim at modeling generative relationship between
P (Ȳ = ȳ | X = x) and P (Y = y | X = x) (WLOG, we
rewrite these terms as P (ȳ | x) and P (y | x) in the rest
of this paper), which can be categorized into the unbiased
generative assumption and the biased one, respectively. The
work of Ishida et al. (2017) follows the first assumption to
define P (ȳ | x) as

p̄(x, ȳ) =
1

c− 1

∑
y 6=ȳ

p(x, y)

⇔ P (ȳ | x)p̄(x) =
1

c− 1

∑
y 6=ȳ

P (y | x)p(x). (3)

Since p̄(x) = p(x), we have P (ȳ | x) = 1
c−1

∑
y 6=ȳ p(y |

x). Based on Eq.(3), the OVA loss and PC loss for CLL,
which naturally lead to an URE serving as an alternative
formulation to Eq.(1), are defined as
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L̄OV A(f(X), Ȳ ) =
1

c− 1

∑
Y 6=Ȳ

`(fY (X)) + `(−fȲ (X))

L̄PC(f(X), Ȳ ) =
∑
Y 6=Ȳ

`(fY (X)− fȲ (X)) (4)

where `(z) is a binary loss which satisfies `(z)+`(−z) = 1,
such as the sigmoid loss `S(z) = 1

1+ez .

Different from Ishida et al. (2017; 2019), Yu et al. (2018)
took another assumption which considers that the generative
relationship between P (ȳ | x) and P (y | x) is biased, i.e.
the complementary label of an instance X is non-uniformly
selected from Y \ {Y }. Therefore, this biased assumption
can be formalized as P (Ȳ = j | X) =

∑
k 6=j P (Ȳ =

j | Y = k)P (Y = k | X), where this biased generative
relationship can be characterized by a transition probability
matrix Q, i.e. Qkj = P (Ȳ = j | Y = k) and Qkk = 0,
∀k, j ∈ {1, . . . , c}.

Although feasible CLL approaches have been developed
by exploiting either the unbiased (uniform) or biased
(transition-based) generative assumption, their performance
may be suboptimal for real-world CLL tasks where the two
assumptions do not necessarily hold. In this paper, we pro-
pose a simple yet effective discriminative solution towards
CLL which directly models P (ȳ | x) from the predictive
probability, and the solution naturally results in a CLL risk
estimator with estimation error bound. We further introduce
the weighted loss to maximize the predictive gap between
the potential ground-truth label and complementary label.

3. The Proposed Approach
In this section, we introduce the proposed discriminative
model and weighted loss. Accordingly, we further derive
the estimation error bound of our approach.

3.1. The Discriminative Model

In ordinary multi-class classification, we aim to optimize
Eq.(1) where the predictive probability of the ground-truth
label approaches one, i.e. fY (X) → 1, and other other
labels to zero. In contrast, due to the complementary label
is obviously not the ground-truth label of an instance, CLL
expects that the predictive probability of the complementary
label approaches zero, i.e. fȲ (X)→ 0 (Kim et al., 2019).

The idea of Kim et al. (2019) also brings a strong motivation
for us to propose the discriminative model that directly esti-
mates P (ȳ | x) from the classifiers’ output. Different from
the approach proposed by Chou et al. (2020), we directly
define the prediction probability of complementary label as
f̄(X) = 1− f(X). Hence, the complementary loss ¯̀can
be expressed as

¯̀(f(X), eȲ ) = `(f̄(X), eȲ ) = `(1− f(X), eȲ ) (5)

where eȲ ∈ {0, 1}c is a one-hot vector for label Ȳ , in which
the Ȳ -th element of eȲ is one and all other elements being
zero. As discussed above, the novel risk estimator for CLL
can be described as

R̄(f) = E(X,Ȳ )∼p̄(x,ȳ)

[
¯̀(f(X), eȲ )

]
. (6)

Correspondingly, the empirical risk estimator corresponds
to

R̄n =
1

n

n∑
i=1

c∑
k=1

`(1− fk(xi), e
ȳi
k ) (7)

where eȳik is the k-th element of eȳi , f̄k denotes the k-th
element of f̄ .

3.2. Estimation Error Bound

Let F = {f(x)} be a c-valued function class to minimize
empirical risk, where f = {f1, . . . , fc} ∈ F . We denote
R̂n(F) as the Rademacher complexity of F for X with data
size n (Mohri et al., 2012) and f̄∗n = argminf∈F R̄n(f).
Using M and L` to denote the upper bound and Lipschitz
constant of ordinary loss function ` respectively. Here, we
first establish the upper bound of R̂n(¯̀◦ F) in Lemma 1,
which naturally leads to the uniform deviation bound that
further guarantees to derive the estimation error bound. We
start investigating Lemma 1 from Assumption 1.

Assumption 1. The loss function `(·, ·) satisfies

`(1− fk(X), 1− eYk ) ≤ `(fk(X), eYk ). (8)

Such an assumption holds for some commonly used loss
functions, such as MSE (Mean Squared Error) loss and
MAE (Mean Absolute Error) loss.

Lemma 1. Based on Eq.(5) and Assumption 1, it holds that

R̂n(¯̀◦ F) ≤ c2L`R̂n (Fk) . (9)

The proof is provided in Appendix. Given the upper bound
for R̂n(¯̀ ◦ F), we can directly obtain Lemma 2 based
on McDiarmid’s inequality (McDiarmid, 2013) and sym-
metrization (Mohri et al., 2012), which defines the uniform
deviation bound.

Lemma 2. For any δ > 0, with probability at least 1− δ,

sup
f∈F

∣∣R̄(f)− R̄n(f)
∣∣ ≤ 2c2L`R̂n(Fk) (10)

+M

√
log(2/δ)

2n

where R̄(f) and R̄n(f) is defined by Eq.(6) and Eq.(7)
respectively. The proof is given in Appendix.

According to Lemma 2, we can establish the estimation
error bound for the proposed CLL risk estimator. The esti-
mation error bound is shown in Theorem 1, whose proof is
presented in Appendix.
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Algorithm 1 CLL with weighted loss
Input:
D̄ : the complementary-label training set {xi, ȳi}ni=1;
T : the number of epochs;
A: an external stochastic optimization algorithm;
Output:
θ : model parameter for f(x; θ);
fk(·) : the k-th element of f(x; θ) and the predictive
probability of the k-th label being the ground-truth label
of an instance;
for t = 1 to T do do

Shuffle D̄ into B mini-batchs each with size s;
for b = 1 to B do do

Let xbi be the i-th instance in b-th mini-batch, and
ȳbi be the corresponding complementary label;

Set wki =
1−fk(xb

i )∑c
j=1(1−fj(xb

i ))
;

Let Lb be the risk of b-th mini-batches, Lb =
1
s

∑s
i=1

∑c
k=1(1 + wki )¯̀(fk(xbi ), e

ȳbi
k );

Set gradient −∇θLb;
Update θ by A;

end for
end for

Theorem 1. For any δ > 0, with probability at least 1− δ,

R̄(f̄∗n)− R̄(f̄∗) ≤ 4c2L`R̂n(Fk) +M

√
2log(2/δ)

n
.

(11)
For all parametric models with a bounded norm, as n→∞,
R̄(f̄∗n)→ R̄(f̄∗). Theorem 1 shows that the proposed risk
estimator exists an estimation error bound and convergence
rate is O(1

√
n). Note that in Eq.(11), c2 shows that the

number of labels have a strong impact on our empirical
performance. This implication agrees well with our expec-
tation: the fewer number of labels, the more effective our
proposed CLL method.

3.3. The Weighted Loss
Commonly, the estimated posterior probability can be re-
garded as one metric to measure the prediction uncertainty
and increasing uncertainty could lead to a deteriorated pre-
diction performance (Yao et al., 2020). In Subsection 3.1,
we propose to estimate the posterior probability of the com-
plementary label. Although the proposed method is the-
oretically sound, its performance still depends heavily on
the number of instances and the number of labels. In this
part, we consider employing the prediction uncertainty in
our proposed method. In this way, the highly confident pre-
dictions in the early stage of learning can be employed to
boost the performance of succeeding updating of the model.
Our solution is to introduce a weighted loss term to ¯̀ to
minimize the loss value in CLL, which is defined as

¯̀(f(X), eȲ ) = w`(1− f(X), eȲ ) (12)

where w corresponds to a loss weight vector in the c-
dimensional simplex ∆c−1.

Intuitively, w should be related to the prediction uncertainty
and should be updated constantly through the whole learning
process. A recent line of work proposes strategies, including
maximum likelihood and maximum margin, to highlight the
ground-truth label (Nguyen & Caruana, 2008; Liu & Diet-
terich, 2012; Yao et al., 2020; Jin & Ghahramani, 2002). In
order to stand out the ground-truth label from all labels, max-
imum likelihood methods generally adopt EM procedure
to optimize their models, which firstly use an independent
E-step to learn weights, then train the models until con-
vergence in the M-step (Jin & Ghahramani, 2002; Liu &
Dietterich, 2012; Lv et al., 2020). However, E-step of these
methods are separated from the M-step. In this way, these
methods are easy to have a greedy solution, which will lead
to the overfitting problem(Lv et al., 2020). Maximum mar-
gin methods maximize the margin between the ground-truth
label and other labels to make the ground-truth label gradu-
ally prominent (Nguyen & Caruana, 2008). As thoroughly
discussed in Yao et al. (2020), these methods are difficult to
be calibrated in the later processing when false positive is
selected in the current step.

To address aforementioned problems, we use the current
prediction probability of the complementary label to make
more use of highly possible complementary labels. More-
over, E-step and M-step are considered as a whole during
the training procedure and weights can be updated easily as
well. Specially, we set w = [w1, w2, . . . , wc], where wk is
the k-th element of w and is defined as

wk =
1− fk(X)∑c

j=1(1− fj(X))
. (13)

Note that
∑c
k=1 wk = 1 and wk ≥ 0. Let us explain the

setting of w with a simple CLL task of three labels (c = 3).
Let f̄(xi) = [0.1, 0.7, 0.2] denote the predicted posterior
probability of the three labels for xi, we can infer that
the first label is the potential ground-truth label because
f(xi) = 1 − f̄(xi). By our setting of w, the weight vec-
tor in Eq.(13) become [0.1, 0.7, 0.2] as well, and we apply
a smaller weight to treating the ground-truth label as the
complementary label, and a larger weight to treating two
other labels, especially the highly confident second label
as complementary labels. Therefore, the potential ground-
truth label will be prominent gradually as the increasing of
the predictive gap between the potential ground-truth label
and the complementary label of each instance. Accordingly,
we add the weighted loss and the unweighted loss together,
resulting in our targeted loss

¯̀(f(X), eȲ ) =

c∑
k=1

(1 + λwk)`(1− fk(X), eȲk ) (14)

and the empirical risk estimator for CLL is described as
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Figure 1. The experimental results on various test datasets with different loss functions and models for 300 epochs. The dark color is the
mean accuracy and the light color corresponds to the std.

R̄n =
1

n

n∑
i=1

c∑
k=1

(1 + λwki )`(1− fk(xi), e
ȳi
k ) (15)

wherewki corresponds to the k-th element of loss weight vec-
tor wi for instance xi. λ is the tradeoff parameter between
the original loss function and the weighted loss function,
and we set it simply as 1. The overall procedure of the
proposed approach is shown in Algorithm 1.

4. Experiments
In this section, we evaluate the performance of the pro-
posed approach with comparative studies against state-of-
the-art complementary-label learning approaches. We use
L-UW and L-W to denote the proposed CLL approach
instantiated with complementary loss function in Eq.(5)
and Eq.(14) respectively. Due to f̄ is directly applied
to a model training, which will result in the gradient dif-
fusion problem of a model, we employ the constraint∑c
k=1 f̄k(X) = 1, where softmax function is used to nor-

malize f̄ to make f̄ satisfy the constraint. Then, f̄ can
be immediately defined as f̄ = softmax(1 − f), where
f̄k = exp(1− fk)/

∑c
j=1 exp(1− fk). The cross-entropy

loss is commonly applied to multi-class classification tasks,
which is adopted to replace ` in this paper. All experiments
are implemented based on PyTorch (Paszke et al., 2019) and
Colab 1. The code is available at https://github.com/Yolk-
justlike/complementary-label-learning.

1https://colab.research.google.com

4.1. Experimental Settings

Datasets Following Ishida et al. (2017; 2019); Yu et al.
(2018); Feng et al. (2020), three widely-used benchmark
datasets, namely MNIST (Lecun et al., 1998), Fashion-
MNIST (Fashion) (Xiao et al., 2017), and Kuzushiji-MNIST
(Kuzushiji) (Clanuwat et al., 2018), are used for experimen-
tal studies.

• MNIST dataset (Lecun et al., 1998) is a handwritten
digits dataset that consists of 10 classes, which has
60,000 training examples and 10,000 test examples.

• Fashion dataset is collected by Xiao et al. (2017)
from standardized images of fashion items, which has
60,000 training images and 10,000 test images from
10 classes.

• The size of Kuzushiji dataset (Clanuwat et al., 2018)
is similar to MNIST dataset. Kuzushiji dataset derives
from Kuzushiji which includes 60,000 training images
and 10,000 test images from 10 classes.

Base models Two base models are utilized: linear model
and MLP model (d− 500− c).

Baselines We employ four state-of-the-art CLL approaches
to be compared with, including Pairwise Comparison (PC)
with sigmoid loss (Ishida et al., 2017), forward loss cor-
rection (Forward) (Yu et al., 2018), Gradient Ascent (GA)
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Figure 2. Empirical risk minimization procedure for various models and loss functions.

Table 1. Test accuracy (mean±std) out of 10 trials (in %), where data with unbiased complementary labels is used to train. The best
performance on each data set is shown in boldface.

Dataset Model PC Forward GA NN L-UW L-W

MNIST
linear 82.31±0.72 90.42±0.17 83.23±0.43 84.56±0.31 89.98±0.20 90.22±0.11

MLP 84.04±0.55 91.93±0.25 92.49±0.25 89.99±0.42 92.45±0.24 92.08±0.28

Fashion
linear 75.29±0.83 81.14±0.20 77.41±0.30 78.32±0.31 81.79±0.22 82.04±0.21
MLP 77.55±0.39 82.31±0.24 81.62±0.19 80.29±0.47 83.15±0.20 83.40±0.32

Kuzushiji
linear 54.57±1.13 60.57±0.42 52.52±1.12 55.27±0.85 60.87±0.48 61.29±0.31
MLP 59.32±0.59 65.59±0.54 69.56±0.53 65.44±0.51 65.17±1.43 66.98±1.63

Table 2. The Win/Loss statistics for the proposed approach of Table
1. If our approach outperforms comparison baselines, add 1 to the
count of ours; otherwise, add 1 to the comparison baselines.

Baselines PC Forward GA NN
L-UW 6/0 4/2 4/2 5/1
L-W 6/0 5/1 4/2 6/0

(Ishida et al., 2019) and Non-Negative loss (NN) (Ishida
et al., 2019).

4.2. Comparison on Unbiased Complementary Labels

Setup Weight decay is set as 1e-4 and learning rate of 5e-5
is used for MNIST, Fashion and Kuzushiji. Adam (Kingma
& Ba, 2015) optimization method is applied. For all datasets,
the number of epoch and mini-batch size are set as 300 and

Table 3. The Win/Loss statistics for the proposed approach of Table
4. If our approach outperforms comparison baselines, add 1 to the
count of ours; otherwise, add 1 to the comparison baselines.

Baselines PC Forward GA
L-UW 14/4 13/5 15/3
L-W 15/3 16/2 15/3

256 respectively.

We divide the original training dataset into training and
validation parts with proportion 9/1, where complementary
labels are generated by randomly choosing one of the labels
other than the ground-truth one (unbiased complementary-
label generation). Test set with ordinary labels is used to
evaluate the performance of each comparing approach. The
mean and standard deviation (std) of test accuracy out of 10
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Table 4. Test accuracy (mean±std) on three datasets out of 5 trials (in %), where data with biased complementary labels is used to train.
The best performance on each data set is shown in boldface.

Set 1
Baselines PC Forward GA L-UW L-W

MNIST
linear 19.66±0.28 19.54±0.58 9.86±0.15 18.23±0.17 18.57±0.55
MLP 19.34±0.69 20.44±0.15 9.80±0.00 19.46±0.34 21.13±2.06

Fanshion
linear 10.65±1.11 12.71±2.73 10.01±0.17 13.73±0.28 14.40±0.55
MLP 15.40±3.55 16.94±0.37 10.06±0.87 20.81±1.32 21.77±0.93

Kuzushiji
linear 14.10±0.80 13.40±0.88 10.63±0.30 13.17±0.62 13.83±0.24
MLP 14.43±0.87 12.97±0.97 10.22±0.38 13.56±0.59 14.75±0.10

Set 2
Baselines PC Forward GA L-UW L-W

MNIST
linear 19.69±0.63 20.31±0.10 10.19±0.16 23.55±2.05 23.67±0.74
MLP 22.59±2.32 20.44±0.20 10.09±0.00 23.35±0.66 126.76±2.00

Fanshion
linear 12.43±2.51 12.71±2.73 9.75±0.32 17.30±0.35 20.14±0.70
MLP 15.41±3.74 16.94±0.37 10.29±0.50 23.54±0.93 23.17±0.56

Kuzushiji
linear 12.73±0.14 13.35±0.40 9.89±0.57 12.43±0.27 12.51±0.25
MLP 14.93±1.03 12.71±0.66 10.00±0.00 16.45±0.26 17.28±0.45

Set 3
Baselines PC Forward GA L-UW L-W

MNIST
linear 72.22±1.43 78.53±4.41 78.55±0.80 81.16±0.12 79.72±0.27
MLP 84.46±0.23 80.67±5.34 85.13±0.10 84.98±0.10 85.91±0.11

Fanshion
linear 58.34±0.61 60.28±3.76 65.62±0.17 59.71±4.08 61.57±0.45
MLP 58.00±0.91 61.92±3.56 63.80±0.07 62.19±0.13 63.11±0.12

Kuzushiji
linear 46.54±0.43 54.41±1.95 50.16±0.41 54.47±1.10 57.85±2.32
MLP 51.85±1.58 51.05±1.52 52.24±0.72 52.56±3.62 52.02±3.68

trials on the model that corresponds to the best validation
score on 300 epochs are shown in Table 1.

Results We show the mean and std of test accuracy for
300 epochs on MNIST, Fanshion, and Kuzushiji in Figure
1. Figure 2 illustrates corresponding empirical risk of PC
(Ishida et al., 2017), Forward (Yu et al., 2018), GA (Ishida
et al., 2019), NN (Ishida et al., 2019), L-UW and L-W on
three benchmark datasets for all epochs during the process
of training.

Based on the reported results in Figure 1, we can observe
that the proposed discriminative CLL approach achieves
better or at least comparable performance against the com-
paring approaches on different datasets. As shown in Figure
1, the std of GA is greater than that of L-UW and L-W,
which demonstrates that the performance of our approaches
is more stable than GA on different training data partition-
ing. Furthermore, the test accuracy of approaches in later
training epochs gradually decrease when the more complex
models are applied, which is especially prominent under the
case of using MLP model. This is because overparameter-
ized deep neural networks are available to make the training
loss go zero via memorizing training data, while the model
becomes overconfident with a weak generalization perfor-
mance that result in the degraded test performance (Ishida
et al., 2020).

The viewpoint as mentioned earlier is reflected in Figure
2 as well, all approaches work normally with linear base
model on MNIST, Fashion and Kuzushiji, while empiri-
cal risk of URE-based methods, such as PC and NN, goes
zero or even negative when MLP model is applied (Ishida
et al., 2019). We observe that the test accuracy of PC starts
decreasing when its empirical risk trends to negative. In
comparison, the gradient ascent trick is used in GA when
the empirical risk approaches negative, which saves GA
from the deteriorated performance.

In Table 1, we report the mean and std of the classification
accuracy on test data out of 10 trials, where Table 2 shows
the Win/Loss statistics of the proposed approach outper-
forming other baselines. The following observations can
be made based on Table 1 and Table 2: 1) L-UW (without
weighted loss term) achieves comparable test accuracy to
PC, Forward, GA and NN on different datasets, which indi-
cates that the proposed simple discriminative model (Eq.(5))
serves as a feasible solution to CLL problem; 2) L-W (with
weighted loss term) works well under all cases; it shows
that the introduction of weighted loss to the discriminative
model does help improve the generalization performance
by maximizing the predictive gap between potential ground-
truth label and complementary label.
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MNIST, linear, set 1 MNIST, linear, set 2 MNIST, linear, set 3 

Fashion, linear, set 1 Fashion, linear, set 2 Fashion, linear, set 3 

Kuzushiji, linear, set 1 Kuzushiji, linear, set 2 Kuzushiji, linear, set 3 

MNIST, MLP, set 1 MNIST, MLP, set 2 MNIST, MLP, set 3 

Fashion, MLP, set 1 Fashion, MLP, set 2 Fashion, MLP, set 3 

Kuzushiji, MLP, set 1 Kuzushiji, MLP, set 2 Kuzushiji, MLP, set 3 

Figure 3. The experimental results on various biased settings on the linear model for 300 epochs. The dark color is the mean accuracy and
the light color corresponds to the std.

4.3. Comparison on Biased Complementary Labels

Setup We use training data which is associated with biased
complementary labels to evaluate the effectiveness of our
approach. The biased complementary-label generation is
similar to Yu et al. (2018). More specifically, we adopt
three settings to generate biased complementary labels.
For all settings, the complementary label is selected from
Y \ {y}, which is divided into three subsets randomly, each
including three class labels. For set 1: the selected prob-
abilities of each complementary label in three subsets are
0.75/3, 0.24/3 and 0.01/3 respectively; the selected prob-
abilities of that are 0.66/3, 0.24/3 and 0.1/3 respectively
for set 2; for set 3, the probability of each label is selected
as the complementary label at probabilities 0.45/3, 0.3/3
and 0.25/3.

We utilize the training dataset associated with biased com-
plementary labels to train the model, while test set with

ordinary labels is applied to evaluate the performance of
approaches. The other experimental settings are same with
Subsection 4.2. The mean and std of test accuracy out of 5
trials on the model that corresponds to the best validation
score on 300 epochs are shown in Table 4. Table 3 is used
to count the Win/Loss results of the proposed approach that
is superior to other baselines.

Results From the results shown in Table 4, we can find
that the test accuracy of all approaches has improved as the
biased degree of complementary labels decreasing, which
also demonstrates that the performance of approaches will
suffer from the non-uniform selection of complementary
labels. Furthermore, experimental results in Table 4 and
Table 3 show that our proposal is better to other baselines in
most cases.

Figure 3 and Figure 4 illustrate the mean and std of test
accuracy for all epochs on the linear model and MLP model
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MNIST, linear, set 1 MNIST, linear, set 2 MNIST, linear, set 3 

Fashion, linear, set 1 Fashion, linear, set 2 Fashion, linear, set 3 

Kuzushiji, linear, set 1 Kuzushiji, linear, set 2 Kuzushiji, linear, set 3 

MNIST, MLP, set 1 MNIST, MLP, set 2 MNIST, MLP, set 3 

Fashion, MLP, set 1 Fashion, MLP, set 2 Fashion, MLP, set 3 

Kuzushiji, MLP, set 1 Kuzushiji, MLP, set 2 Kuzushiji, MLP, set 3 

Figure 4. The experimental results on various biased settings on the MLP model for 300 epochs. The dark color is the mean accuracy and
the light color corresponds to the std.

respectively with different biased settings. As shown in
Figure 3 and Figure 4, L-W gets comparable test accuracy
on various biased setting to Forward when the biased transi-
tion matrix with no additional information is available for
Forward. Moreover, the fluctuation frequency of L-UW and
L-W is less than that of GA in Figure 3, which indicates
that L-UW and L-W have a stable performance in the bi-
ased complementary-label case. Due to the corresponding
empirical risk of biased setting follow the same trend as the
unbiased one, it is put in the Appendix.

5. Conclusion
In this paper, a risk estimator with guaranteed estimation
error bound based on discriminative model is proposed
for CLL. It estimates the complementary label predictions
P (ȳ | x) by the output of discriminative classifiers with
sound theoretical properties. Accordingly, the weighted

loss which makes use of the output of current classifica-
tion model during the training procedure is further intro-
duced to the classification risk to yield the empirical risk for
CLL model training. The effectiveness of the proposed dis-
criminative CLL model is clearly validated with extensive
comparative studies over benchmark datasets.
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Supplementary Material for Discriminative Complementary-Label Learning
with Weighted Loss

A. The Proof of Lemma 1
Lemma 1. Based on Eq.(5) and Assumption 1, it holds that

R̂n(¯̀◦ F) ≤ c2L`R̂n (Fk)

Proof. Given

R̂n(¯̀◦ F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σi ¯̀(f(xi), e
ȳi)

]
where σ = [σ1, . . . , σn], which denotes n Rademacher varibles. Let us first assume c = 2 and use the max operator
max(a, b) = 1

2 (a+ b+ |a− b|). Thus, we have

R̂n(¯̀◦ F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σi ¯̀(f(xi), e
ȳi)

]

= Eσ

[
sup
f∈F

1

n

n∑
i=1

σi

c∑
k=1

¯̀(fk(xi), e
ȳi
k )

]

≤ Eσ

[
sup
f∈F

1

n

n∑
i=1

cσi max
k∈{1,...,c}

¯̀(fk(xi), e
ȳi
k )

]

≤ Eσ

[
sup
f∈F

1

2n

n∑
i=1

cσi ¯̀(f1(xi), e
ȳi
1 )

]

+ Eσ

[
sup
f∈F

1

2n

n∑
i=1

cσi ¯̀(f2(xi), e
ȳi
2 )

]

+ Eσ

[
sup
f∈F

1

2n

n∑
i=1

cσi|¯̀(f1(xi), e
ȳi
1 )− ¯̀(f2(xi), e

ȳi
2 )|

]

≤ 2Eσ

[
sup
f∈F

1

n

n∑
i=1

cσi ¯̀(fk(xi), e
ȳi
k )

]
When there are c classes, the general case can be derived from max{z1, . . . , zc} = max{z1,max{z2, . . . , zc}}, by
recurrence, we will have

R̂n(¯̀◦ F) ≤ c2Eσ

[
sup
f∈F

1

n

n∑
i=1

σi ¯̀(fk(xi), e
ȳi
k )

]

By our Assumption 1 and the definition of ¯̀(·), we further have

Eσ

[
sup
f∈F

1

n

n∑
i=1

σi ¯̀(fk(xi), e
ȳi
k )

]

≤ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi`(1− fk(xi), 1− eyik )

]
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≤ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi`(fk(xi), e
yi
k )

]
= R̂n(` ◦ Fk)

According to Talagrand’s contraction lemma (Ledoux & Talagrand, 1991), we have R̂n(¯̀◦ F) ≤ c2L`R̂n(Fk). �

B. The Proof of Lemma 2
Given the upper bound for R̂n(¯̀◦ F), we can prove Lemma 2 that defines the uniform deviation bound.

Lemma 2. For any δ > 0, with probability at least 1− δ,

sup
f∈F

∣∣R̄(f)− R̄n(f)
∣∣ ≤ 2c2L`R̂n(Fk) +M

√
log(2/δ)

2n

where R̄(f) and R̄n(f) is defined by Eq.(6) and Eq.(7) respectively.

Proof. Consider the single direction supf∈F (R̄(f)− R̄n(f)) with probability at least 1−δ/2. BecauseM is the upper bound
of `, the change of supf∈F

(
R̄(f)− R̄n(f)

)
is no greater than M/n after some x are replaced. So using McDiarmid’s

inequality (McDiarmid, 2013) to supf∈F
(
R̄(f)− R̄n(f)

)
, we have

sup
f∈F

(
R̄(f)− R̄n(f)

)
≤ E

[
sup
f∈F

(
R̄(f)− R̄n(f)

)]
+M

√
log (2/δ)

2n

By symmetrization (Mohri et al., 2012), it is a routine work to show that

E

[
sup
f∈F

(
R̄(f)− R̄n(f)

)]
≤ 2R̂n(¯̀◦ F) = 2c2L`R̂n(Fk)

�

C. The Proof of Theorem 1
According to Lemma 2, we can establish the estimation error bound for the proposed CLL risk estimator. The estimation
error bound is shown in Theorem 1.

Theorem 1. For any δ > 0, with probability at least 1− δ,

R̄(f̄∗n)− R̄(f̄∗) ≤ 4c2L`R̂n(Fk) +M

√
2log(2/δ)

n

Proof.

R̄(f̄∗n)− R̄(f̄∗) = (R̄n(f̄∗n)− R̄n(f̄∗)) + (R̄(f̄∗n)− R̄n(f̄∗n)) + (R̄n(f̄∗)− R̄(f̄∗))

≤ R̄(f̄∗n)− R̄n(f̄∗n) + R̄n(f̄∗)− R̄(f̄∗)

≤ 2sup
f∈F

∣∣R̄n(f̄)− R̄(f̄)
∣∣

≤ 4c2L`R̂n(Fk) +M

√
2 log (2/δ)

n

Since R̄n(f̄∗n) − R̄n(f̄∗) ≤ 0, the second step in the above equation naturally follows from the first step. The proof is
complete. �
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MNIST, linear, set 1 MNIST, linear, set 2 MNIST, linear, set 3 

Fashion, linear, set 1 Fashion, linear, set 2 Fashion, linear, set 3 

Kuzushiji, linear, set 1 Kuzushiji, linear, set 2 Kuzushiji, linear, set 3 

MNIST, MLP, set 1 MNIST, MLP, set 2 MNIST, MLP, set 3 

Fashion, MLP, set 1 Fashion, MLP, set 2 Fashion, MLP, set 3 

Kuzushiji, MLP, set 1 Kuzushiji, MLP, set 2 Kuzushiji, MLP, set 3 

Figure 1. The experimental results on various biased settings on the linear model for 300 epochs. The dark color is the mean accuracy and
the light color corresponds to the std.

D. Empirical Risk for Biased Settings
Figure 1 and Figure 2 are corresponding empirical risks for the linear model and MLP model on various datasets and biased
settings.

Results From Figure 1, the empirical risk of PC on three datasets goes non-negative when the generation setting of
complementary labels gradually becomes uniform. Furthermore, as shown in Figure 1, all approaches work normally with
linear base model on MNIST, Fashion-MNIST and Kuzushiji-MNIST, while empirical risk of URE-based methods, such as
PC and GA, goes zero or even negative when the more complex models are applied (shown in 2). Specifically, under the
case of using MLP model, the performance of PC becomes the worst. This is due to the property that URE-based methods
are easy to suffer from over-fitting problem when using complex models (Chou et al., 2020).
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MNIST, linear, set 1 MNIST, linear, set 2 MNIST, linear, set 3 

Fashion, linear, set 1 Fashion, linear, set 2 Fashion, linear, set 3 

Kuzushiji, linear, set 1 Kuzushiji, linear, set 2 Kuzushiji, linear, set 3 

MNIST, MLP, set 1 MNIST, MLP, set 2 MNIST, MLP, set 3 

Fashion, MLP, set 1 Fashion, MLP, set 2 Fashion, MLP, set 3 

Kuzushiji, MLP, set 1 Kuzushiji, MLP, set 2 Kuzushiji, MLP, set 3 

Figure 2. The experimental results on various biased settings on the MLP model for 300 epochs. The dark color is the mean accuracy and
the light color corresponds to the std.


