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Abstract

Multi-label complementary label learning (MLCLL) is a weakly supervised
paradigm that addresses multi-label learning (MLL) tasks using complementary
labels (i.e., irrelevant labels) instead of relevant labels. Existing methods typically
adopt an unbiased risk estimator (URE) under the assumption that complemen-
tary labels follow a uniform distribution. However, this assumption fails in real-
world scenarios due to instance-specific annotation biases, making URE-based
methods ineffective under such conditions. Furthermore, existing methods un-
derutilize label correlations inherent in MLL. To address these limitations, we
propose ComRank, a ranking loss framework for MLCLL, which encourages
complementary labels to be ranked lower than non-complementary ones, thereby
modeling pairwise label relationships. Theoretically, our surrogate loss ensures
Bayes consistency under both uniform and biased cases. Experiments demon-
strate the effectiveness of our method in MLCLL tasks. The code is available at
https://github.com/JellyJamZhu/ComRank.

1 Introduction

Multi-label learning (MLL) refers to a task where an instance is associated with multiple relevant
labels, which has broad applications in real-world scenarios [Zhang and Zhou, 2014, Tang et al.,
2023, Kou et al., 2024]. However, accurately labeling a large number of instances with all their true
labels incurs high labor costs. To address this issue, weakly supervised learning for MLL has gained
widespread attention in recent years, including semi-supervised multi-label learning [Liu et al., 2006,
Niu et al., 2019], multi-label learning with missing labels [Sun et al., 2010, Wu et al., 2014], and
partial multi-label learning (PML) [Xie and Huang, 2018, Zhang and Fang, 2020].

Multi-label complementary label learning (MLCLL) has recently emerged as a weakly supervised
learning paradigm, which enables algorithms to learn from complementary labels instead of rele-
vant labels to address the MLL problem. In MLCLL, each training instance is associated with a
complementary label rather than relevant labels, where the complementary label specifies a label
that the instance does not belong to. One application for MLCLL is privacy preservation, such as
in sensitive surveys where respondents may hesitate to provide all truthful answers. By only asking
them to exclude certain options, data collection becomes easier and more privacy-friendly, while also
reducing labeling costs.
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The conventional solution for MLCLL currently revolves around the unbiased risk estimator (URE),
which is a powerful tool in weakly supervised learning that enables the accurate estimation of true
classification risk. Specifically, these methods derive URE by assuming that complementary labels
follow uniform distribution, where a URE can be constructed based on common MLL loss functions
such as binary cross-entropy loss (BCE), mean squared error loss (MSE), and mean absolute error
loss (MAE). With the above uniform assumption, Gao et al. [2023] firstly investigate the MLCLL
problem and derive a URE. Moreover, they propose a gradient-friendly MLCLL loss to enhance
gradient updating of the URE. However, this uniform assumption may fail in real-world scenarios,
where annotators may provide complementary labels with biases influenced by the characteristics of
the instances. Moreover, previous URE-based methods do not fully exploit label correlations, which
are critical in MLL.

In MLCLL, based on the fact that complementary labels are known to be irrelevant, while non-
complementary labels may include relevant ones, it is generally desirable for the predicted probabili-
ties of complementary labels to rank lower than those of non-complementary labels. This intuition
naturally aligns with the objective of ranking loss. Inspired by this observation, we propose a com-
plementary ranking loss (called ComRank) framework for MLCLL, which encourages learning by
enforcing this ranking constraint and capturing pairwise relationships between labels. Additionally,
our framework uses an exponential loss as the surrogate loss, while the complementary ranking
loss achieves Bayes consistency under both cases of uniform and biased complementary labels.
This overcomes the limitation of the URE, which only has theoretical guarantees under uniform
complementary labels. Furthermore, our proposed framework can directly capture label correlation
information from the rankings, offering unique advantages in MLL. Outstanding experimental results
demonstrate the effectiveness of our method. The main contributions of this paper are as follows:

• We theoretically analyze why existing URE-based methods cannot work well on comple-
mentary labels with a biased distribution. URE strongly depends on the uniform assumption
of complementary labels, and fails to estimate the expected risk when the complementary
label distribution shifts.

• We firstly introduce ranking loss into MLCLL and propose a complementary ranking
loss framework, ComRank, for MLCLL. We theoretically prove that it possesses Bayes
consistency under both uniform and biased complementary labels. Experiments on different
complementary label distributions demonstrate the outstanding performance of our method.

The remainder of this paper is organized as follows: Section 2 summarizes the related work, and
preliminaries are introduced in section 3. Discussion on URE with different complementary label
distribution are provided in section 4. Section 5 and section 6 introduce ComRank and its experimental
results. The last section 7 concludes our work.

2 Related Work

Multi-label learning. MLL is a classification task where each instance can be related to multiple
labels simultaneously [Jia et al., 2023, Shi et al., 2024]. Considering label correlations during training,
there has been extensive theoretical exploration of ranking in MLL. Gao and Zhou [2011] first
defined the consistency of MLL and Li et al. [2017] introduced the concept of Bayes consistency
into the context of ranking loss for MLL, proposing a surrogate loss proven to be consistent from the
perspective of the Bayes prediction rule. Xie and Huang [2018] shows that in probabilistic MLL,
ranking between positive and negative labels can help disambiguate false positives. Li et al. [2024]
illustrates that missing labels can be assumed to rank between positive and negative labels in weakly
supervised MLL settings. However, these studies on ranking loss are all focused on supervised
scenarios and are not applicable to the MLCLL problem.

Complementary label learning (CLL). CLL was first proposed to solve the multi-class classification
tasks, which aims to train a multi-class classifier using complementary labels. Ishida et al. [2017]
initially derived a URE by modifying pairwise-comparison and one-versus-all losses for CLL under
the assumption of uniform complementary label distribution. To get rid of trapping in specific losses,
Ishida et al. [2019] extended a general URE framework that can accommodate arbitrary losses.
Recognizing that the uniform assumption for generating complementary labels may fail to handle
the real-world scenarios, various methods that diverge from uniform assumption have also been
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investigated, such as Yu et al. [2018] relaxed CLL to biased complementary labels by estimating a
transition matrix, and Gao and Zhang [2021] developed a discriminative model without the uniform
assumption. The success of these methods is based on the multi-class scenarios, but they may not be
suitable for the MLCLL problem.

Multi-label complementary label learning. MLCLL was first introduced by Gao et al. [2023] as a
solution to the challenge of collecting and accurately annotating multi-label data. Under the uniform
assumption (i.e., randomly sampled from irrelevant labels), Gao et al. [2023] derived a URE, which
ensures the classifier learned through complementary labels converges to the optimal classifier in
MLL. Furthermore, in later research, Gao et al. [2024] allowed the use of biased complementary
labels to recover relevant labels through an estimated transition matrix, and Gao et al. [2025] further
investigated the URE in the setting of multiple complementary labels. Unfortunately, these methods
fail to consider the biased complementary label distribution, or do not provide theoretical guarantees
to derive a URE under biased distribution.

Therefore, in this paper, we demonstrate why URE-based methods cannot remain unbiased across
non-uniform complementary label distributions, making it impossible for these methods to accurately
estimate the true classification risk in MLL. Furthermore, we propose a novel complementary ranking
loss framework, ComRank, for MLCLL, which offers theoretical guarantees under both uniform and
biased complementary label distributions.

3 Preliminaries

In MLL, X ⊂ Rd and Y ⊆ {0, 1}K represent the d-dimensional feature space and the label space
with K labels, respectively. A multi-label sample can be represented as (x, Y ) ∈ X ×Y , where x and
Y follow the probability distribution p(x, Y ). Let the training set be D = {(xi, Yi) | 1 ≤ i ≤ N}.
Here, Y can be written as a K-dimensional vector y = [y1, y2, . . . , yK ] ∈ {0, 1}K , where yk = 1
indicates that the label k is related to x. The objective of MLL is to train a multi-label classifier
g : X → RK by minimizing the following expected risk R(g), where gk ∈ [0, 1] is the predicted
probability for the k-th element and L denotes the common MLL loss:

g∗ = argmin
g∈G

R(g) = argmin
g∈G

Ep(x,Y ) [L(g(x), Y )] . (1)

In MLCLL, we define the complementary training set as D̄ = {(xi, ȳi) | 1 ≤ i ≤ N}, where
ȳi ∈ {Y − Yi}. To ensure the validity of ȳi, Yi cannot be ∅ or Y , so |Y| = 2K − 2. x and ȳ
follow a distribution p(x, ȳ). For convenience, ȳ can be represented as a K-dimensional vector
ȳ = [ȳ1, ȳ2, . . . , ȳK ] ∈ {0, 1}K , where ȳk = 1 indicates that the label k is the complementary label
of x. MLCLL aims to train a multi-label classification classifier ḡ : X → RK , which can predict
relevant labels for unseen instances. Let L̄ represent the MLCLL loss, and the optimal classifier ḡ∗ is
obtained by minimizing the expected risk of MLCLL:

ḡ∗ = argmin
g∈G

R̄(g) = argmin
g∈G

Ep(x,ȳ)

[
L̄(g(x), ȳ)

]
. (2)

Before commencing the analysis, we first present the definitions of URE. URE is an important tool
for weakly supervised method [Ishida et al., 2019, Feng et al., 2020], providing an accurate estimation
of the true risk R(g), i.e., R(g) = R̄(g). Therefore, R̄(g) is referred as a URE of R(g).

4 Complementary Label Distribution

Existing URE-based methods in MLCLL recover relevant labels and construct corresponding clas-
sifiers from complementary labels by making reasonable assumptions about the distribution of
complementary labels. As a result, the complementary label distribution plays a crucial role in the
modeling process. However, current assumption and theorem have certain limitations. Therefore, a
systematic discussion and reasonable extension of them will be conducted in this section. We start
from the uniform assumption and the existing URE derived from it.
Assumption 4.1. [Ishida et al., 2017, Gao et al., 2023] Uniform Distribution Assumption:

p(k = ȳ|xi) =

{
1

K−|Yi| , if k /∈ Yi,

0, if k ∈ Yi.
(3)
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Assumption 4.1 provides information that complementary labels are uniformly selected from the
label space excluding relevant labels. This implies that each irrelevant label has an equal probability
of being chosen as a complementary label by annotators. Based on this distribution, the contribution
of p(x, Y ) to p(x, ȳ) is also uniform. As a result, a URE can be easily derived according to
Assumption 4.1, which is shown as follows.
Theorem 4.2. [Gao et al., 2023] URE under the uniform distribution: With p(k = ȳ|x) defined in
Assumption 4.1 and R(g) defined in Eq. (1), the equality R̄(g) = Ru(g) holds, where

Ru(g) = Ep(x,ȳ)

 1

2K−1 − 1

∑
Y⊆Y,ȳ ̸=Y

L(g, Y )

 . (4)

However, in the real world, a uniform distribution may hardly cover actual scenarios. Some label
combinations may be more likely to occur than others. Labels with a higher correlation to the relevant
labels are closer to relevant labels and less likely to be chosen as complementary labels [Gao et al.,
2024]. For example, when the relevant label is water, annotators are more likely to choose desert (a
low co-occurrence label) rather than lake (a high co-occurrence label) as the complementary label.
At the same time, lake is more likely to be closer to the relevant label compared to desert.

Therefore, we extend complementary labels from a uniform distribution to a biased distribution. Let
matrix L = [l]|Y|×K represents the correlation matrix, where L has |Y| = 2K − 2 rows, with each
row corresponding to a label set Y ∈ Y . The element lY k represents the correlation between the
label set Y and the k-th label. The closer Y is to the k-th label, the larger lY k is. Note that L is used
only for inference and does not appear in later computations.
Assumption 4.3. Biased Distribution Assumption:

p(k = ȳ|x) =

{
z

lY k
, if k /∈ Y,

0, if k ∈ Y,
(5)

where z = 1∑K
k=1,k/∈Y

1
lY k

, lY k ∝ p(k ∈ Y |x).

Assumption 4.3 summarizes the condition probabilities of a biased complementary label distribution.
Here, z in Eq. (5) is the normalization factor, ensuring that p(k = ȳ|x) forms a valid probability
distribution. The correlation lY k in Eq. (5) is proportional to p(k ∈ Y |x), meaning the correlation
between label k and set Y is proportional to the conditional probability that label k belongs to set Y ,
given x.

Besides, the design of previous work is generally based on Label-Dependent Assumption, that is:
The complementary label ȳ is independent of the features x conditioned on the relevant label set
Y , i.e., p(ȳ|Y ) = p(ȳ|x, Y ) [Ishida et al., 2017, 2019, Gao et al., 2023]. This assumption does not
adequately encompass real-world scenarios, as annotators subconsciously select labels that are not
too similar based on the instance’s features, rather than the relevant labels, in the process of choosing
complementary labels. Therefore, we adopt a more realistic Instance-dependent Assumption, which
has been widely used in other weakly supervised scenarios [Xia et al., 2020, Chen et al., 2021, Kou
et al., 2023].
Assumption 4.4. Instance-Dependent Assumption: Given an instance x, the complementary label ȳ
is independent of Y , i.e. p(ȳ|x, Y ) = p(ȳ|x).

Assumption 4.4 is a fundamental premise regarding the relationship between complementary labels
and instances, positing that the selection of a complementary label depends on the instance. In some
scenarios—such as an image containing multiple animals—annotators may struggle to exclude all
relevant categories based solely on features. However, our assumption is motivated by the observation
that annotators often eliminate obviously irrelevant labels by inspecting the input instance (e.g.,
excluding "building" from an image showing animals), without needing to infer the full set of relevant
labels. This behavior supports modeling ȳ as conditionally independent of Y given x. We adopt this
assumption as a tractable approximation that reflects limited annotator under biased complementary
label distributions.

Subsequently, we investigate the URE under the Biased Distribution Assumption. To simplify the
computation, we first express the probability distribution in Assumption 4.4 in matrix form as a bias
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transition matrix, denoted by L̄ = [l̄Y k]|Y|×K ∈ R(2K−2)×K . Here, l̄Y k = p(k = ȳ|x) represents
the probability of label k being selected as the complementary label when the relevant label set for x
is Y . Theorem 4.5 then provides the URE derived from the biased complementary labels.
Theorem 4.5. URE under biased distribution: Given p(k = ȳ|x) and R(g), the equality R(g) =
R̄(g) = Rb(g) holds when

Rb(g) = Ep(x,ȳ)

 ∑
Y⊆Y,ȳ ̸=Y

l̄+Y ȳL(g, Y )

 , (6)

where l̄+Y ȳ belongs to the matrix L̄+ = [l̄+]|Y|×K , and L̄+ is the Moore-Penrose pseudoinverse of
L̄T .

The proof is stated in Appendix B. Compared to the URE under uniform distribution, the construction
of URE (Eq. (6)) under biased distribution is heavily dependent on the specific characteristics of the
distribution. The uniform assumption ensures that each complementary label contributes equally to
the distribution of the relevant labels. However, once there is a bias in the contributions, p(x, ȳ) is
no longer uniform, which inevitably causes the URE to change. Therefore, the URE derived under
the uniform assumption can no longer accurately estimate the expected risk once the distribution of
complementary labels changes. In other words, it becomes ineffective under the biased assumption.

5 The Proposed Framework

5.1 Complementary Ranking Loss

In addition to the lack of universality across different distributions, URE-based methods do not
take label correlations into account, thus losing important information needed to solve the MLL
problem. Since complementary labels are known to be irrelevant, while non-complementary labels
may include relevant ones, enforcing lower scores for complementary labels may help distinguish
likely-relevant labels. This intuitive motivation naturally aligns with the goal of ranking loss, making it
a suitable choice for integration into MLCLL. By incorporating label correlations without significantly
increasing computational complexity, ranking loss has proven to be an effective tool for capturing
pairwise label correlations [Zhang and Fang, 2020, Zhang et al., 2018, Fürnkranz et al., 2008]. In
MLL, the traditional ranking loss is defined as

L(g(x), Y ) =

K∑
k=1,k∈Y

K∑
j=1,j /∈Y

I[gk(x) < gj(x)],

where I(·) is the indicator function, which outputs 1 when the condition holds and otherwise 0.
Inspired by the complementary 0-1 loss [Chou et al., 2020], we propose the complementary ranking
loss for MLCLL:

L̄(g(x), ȳ) =
K∑

k=1,k ̸=ȳ

I[gk(x) < gȳ(x)].

Unlike URE-based methods, the complementary ranking loss does not rely on any assumption
regarding complementary labels. Instead, complementary ranking loss directly compares the predicted
probabilities between different labels. Similar to ranking loss in supervised MLL, it penalizes cases
where the complementary label predicted probability is higher than that of a non-complementary
label, because a complementary label is certainly not a relevant label, while a non-complementary
label may be either relevant or irrelevant. Therefore, it is generally reasonable to assign lower scores
to complementary labels, as they are less likely to be relevant compared to non-complementary labels.
The rationale behind this design will be formally justified in the next subsection.

However, directly optimizing the complementary ranking loss is challenging, as it is typically NP-
hard due to its non-convexity and discontinuity. Thus, a convex surrogate loss can be introduced to
facilitate more efficient optimization, a common method in ranking loss methods:

L̄(g(x), ȳ) =
K∑

k=1,k ̸=ȳ

ℓ(gȳ(x)− gk(x)),
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Algorithm 1 ComRank Algorithm
Input:
D̄: the complementary-label training set {(xi, ȳi)}ni=1
θ: the initial parameters of classifier g
T : the number of epochs
A: an external stochastic optimization algorithm
Output:
g: learned multi-label classifier
Training Routine

1: for t = 1 to T do
2: Let L be the risk,
3: L = 1

n

∑n
i=1{L̄CR(g(xi), ȳi)}

4: Set gradients −∇θL
5: Update θ by A with −∇θL
6: end for

where ℓ represents the surrogate loss. In this paper, we propose a complementary ranking loss
framework named ComRank, using an exponential function as the surrogate loss, shown as follows.
The algorithm of applying ComRank can be referred from Algorithm 1.

L̄CR(g(x), ȳ) =

K∑
k=1,k ̸=ȳ

exp(gȳ(x)− gk(x)).

5.2 Bayes Consistency for ComRank

Bayes consistency is a desirable property of a loss function, ensuring that minimizing the expected
loss leads to the Bayes prediction rule [Li et al., 2017, Cheng et al., 2010]. We say that a loss has
Bayes consistency if it leads g to follow the Bayes prediction rule:

g∗
k(x) = p(k ∈ Y |x).

In contrast, URE only guarantees that the expected risk of MLCLL aligns with that of fully supervised
MLL, without directly evaluating the classification results. Therefore, Bayes consistency is a more
rigorous criterion than URE.

To verify the rationality of ComRank, it’s necessary to demonstrate ComRank’s theoretical soundness
by establishing Bayes consistency. The analysis begins with the following lemma.

Lemma 5.1. Under L̄CR(g(x), ȳ), ḡk(x) ≥ ḡj(x) if and only if p(k = ȳ|x) ≤ p(j = ȳ|x).

The proof can be found in Appendix C. The conclusion of Lemma 5.1 is achieved through risk
minimization, which is a fundamental result that applies to all distributional scenarios of MLCLL.
Moreover, this reflects the relationship between the predictive probabilities given by L̄CR(g(x), ȳ)
and the probability of becoming a complementary label. With Lemma 5.1, we can demonstrate that
L̄CR(g(x), ȳ) exhibits Bayes consistency under both the uniform distribution (Assumption 4.1) and
the biased distribution (Assumption 4.3).

Theorem 5.2. Bayes Consistency for ComRank: For both uniform and biased complementary label
distributions, ḡk(x) ≥ ḡj(x) holds under L̄CR(g(x), ȳ) if and only if p(k ∈ Y |x) ≥ p(j ∈ Y |x).

The proof is stated in Appendix D. Theorem 5.2 shows that ComRank establishes a theoretical
connection whereby the ranking between complementary and non-complementary labels can be
transferred to the ranking between irrelevant and relevant labels. Next, we will provide experimental
results to support its performance.
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Table 1: Average Precision (mean±std) on the training data with uniform complementary labels. The
best performance of each dataset is shown in boldface, where ↓ / ↑ indicates that smaller/larger
values of metrics are better performance.

Methods L-UW CCMN PMLMD PARD MAE GDF Ru(g) ComRank

scene .395±.016 .458±.019 .441±.043 .740±.020 .432±.019 .759±.012 .734±.014 .780±.010
yeast .685±.018 .646±.017 .695±.023 .608±.118 .698±.018 .712±.019 .679±.016 .715±.019
enron .375±.037 .337±.042 .537±.092 .444±.035 .427±.047 .620±.067 .411±.038 .634±.068
rcv1-s1 .445±.020 .409±.028 .348±.030 .468±.089 .427±.029 .471±.057 .363±.019 .491±.118
bibtex .237±.009 .259±.025 .280±.044 .447±.020 .287±.009 .614±.017 .413±.016 .658±.014
bookmark .506±.009 .397±.028 .181±.005 .549±.010 .506±.007 .619±.006 .512±.007 .628±.005
nuswideBoW .451±.010 .431±.014 .457±.025 .457±.057 .466±.011 .553±.008 .595±.008 .585±.010

Table 2: Summary of pairwise t-test for ComRank against other comparing approaches at 0.05
significance level on uniform datasets, showing in form of Win/Tie/Loss.

ComRank against L-UW CCMN PMLMD PARD MAE GDF Ru(g) in total

One Error 5/2/0 5/2/0 6/1/0 5/2/0 5/2/0 4/3/0 6/1/0 36/13/0
Coverage 6/1/0 7/0/0 5/2/0 6/1/0 6/1/0 4/3/0 6/1/0 40/9/0
Ranking Loss 6/1/0 7/0/0 6/1/0 6/1/0 6/1/0 4/3/0 6/1/0 41/8/0
Average Precision 6/1/0 6/1/0 6/1/0 6/1/0 5/2/0 4/3/0 6/0/1 39/9/1
in total 23/5/0 25/3/0 23/5/0 23/5/0 22/6/0 16/12/0 24/0/1 156/40/0

6 Experiments

6.1 Experimental Setup

Datasets. To fully verify the effectiveness of ComRank, we select seven multi-label datasets for
experiments2. The range of their data sizes is from 1702 to 269648, and data domains include text,
biology, and images. Their details can be referred from Appendix A. We unify data preprocessing on
these datasets. To comprehensively illustrate the experimental impact of the single complementary
label, in line with previous studies [Gao et al., 2023, 2024, Hang and Zhang, 2024], for datasets with
label space larger than 50, we extract the 15 most frequently occurring labels and delete instances
that did not appear with these labels.

Data Processing. We use uniform and biased complementary labels to conduct experiments. Specifi-
cally, 1) Uniform complementary labels: Each instance xi is equipped with a complementary label
randomly selected from {Y − Yi}, where irrelevant labels have an equal probability of being cho-
sen; 2) Biased complementary labels: The selection of the complementary label for xi follows a
biased rule: based on co-occurrence rates computed from the original dataset, labels with lower
co-occurrence rates are more likely to be selected. The model is trained on data annotated with
complementary labels, while the test data is labeled with relevant labels.

Baselines. ComRank is compared with seven recent competitive methods, including one CLL method:
L-UW; one MLL method: CCMN; two PML methods: PMLMD and PARD; and three MLCLL
methods: MAE, GDF and Ru(g), which are shown in the following details:

• L-UW [Gao and Zhang, 2021]: A CLL method that incorporates a weighted loss based
on empirical risk to enhance the prediction gap between potential relevant labels and
complementary labels.

• CCMN [Xie and Huang, 2023]: A MLL method that leverages class-conditional multi-label
noise for learning, constructing two unbiased estimators.

• PMLMD [Xie et al., 2021]: A PML method in the form of ranking loss, specially equipped
with weight and meta-disambiguation to figure out candidate labels in partial multi-label
learning label sets.

2Publicly available at https://mulan.sourceforge.net/datasets-mlc.html.
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Table 3: Average Precision (mean±std) on the training data with biased complementary labels. The
best performance of each dataset is shown in boldface, where ↓ / ↑ indicates that smaller/larger
values of metrics are better performance.

Methods L-UW CCMN PMLMD PARD MAE GDF Ru(g) ComRank

scene .398±.021 .461±.020 .445±.032 .691±.021 .424±.018 .729±.020 .716±.026 .751±.015
yeast .691±.018 .650±.032 .702±.025 .661±.039 .703±.018 .714±.019 .691±.014 .717±.019
enron .373±.038 .356±.052 .571±.065 .432±.055 .439±.050 .610±.078 .415±.041 .626±.080
rcv1-s1 .450±.029 .386±.028 .341±.034 .485±.098 .422±.042 .521±.021 .413±.044 .542±.099
bibtex .234±.011 .268±.031 .329±.104 .446±.017 .285±.010 .627±.019 .414±.018 .665±.021
bookmark .525±.012 .389±.024 .180±.005 .557±.009 .518±.008 .629±.006 .517±.013 .647±.006
nuswideBoW .439±.011 .402±.028 .457±.023 .496±.014 .454±.012 .556±.012 .594±.008 .589±.010

Table 4: Summary of pairwise t-test for ComRank against other comparing approaches at 0.05
significance level on biased datasets, showing in form of Win/Tie/Loss.

ComRank against L-UW CCMN PMLMD PARD MAE GDF Ru(g) in total

One Error 6/1/0 6/1/0 6/1/0 5/2/0 6/1/0 4/3/0 5/2/0 38/11/0
Coverage 6/1/0 7/0/0 5/2/0 7/0/0 7/0/0 4/3/0 7/0/0 43/6/0
Ranking Loss 6/1/0 7/0/0 5/2/0 7/0/0 7/0/0 1/6/0 7/0/0 40/9/0
Average Precision 7/0/0 7/0/0 5/2/0 6/1/0 6/1/0 4/3/0 6/1/0 41/8/0
in total 25/3/0 27/1/0 21/7/0 25/3/0 26/2/0 13/14/0 25/3/0 162/34/0

• PARD [Hang and Zhang, 2024]: A PML method based on a probabilistic graphical model,
designed to infer potential ground-truth label information by modeling the generation process
of partial multi-label data.

• MAE [Gao et al., 2023]: A MLCLL method that leverages MAE loss within the URE
framework for learning.

• GDF [Gao et al., 2023]: A MLCLL method that utilizes a gradient descent-friendly loss
based on URE.

• Ru(g) [Gao et al., 2023]: The MLCLL loss function derived from Ru(g) in Eq. (4), the
URE based on uniform complementary labels.

Evaluation Metrics. We evaluate performance using four common MLL metrics: Ranking Loss,
Coverage, One Error and Average Precision. Their details can be referred from Zhang and Zhou
[2014]. Notably, the metric of Ranking Loss evaluates the fraction of reversely ordered label pairs,
i.e., an irrelevant label is ranked higher than a relevant label, which is different from our method.

Implementation Details. Our experiments are conducted using PyTorch [Paszke et al., 2019] and
implement on an NVIDIA TITAN RTX. To ensure fair comparisons, a linear model is applied
to all datasets. For statistical analysis, we employ ten-fold cross-validation, where the dataset is
randomly divided into ten subsets. The results are reported as the mean and standard deviation
(std) of the metric. The weight decay was set to 1e − 3, and the learning rate was selected from
{1e− 3, 1e− 2, 1e− 1}. It is multiplied by 0.1 when the iteration count reaches 100 and 150 [Wang
et al., 2021]. The training epochs for all datasets are 200. These settings were kept consistent across
all methods.

6.2 Comparison on Uniform Complementary Labels

To evaluate the effectiveness of our method under uniform complementary label situation, we use
uniform complementary-labeled data to train.

Results. Table 1 reports the results for Average Precision, while the results for Coverage, One
Error, and Ranking Loss are provided in Table 8 of Appendix E due to space limitations. As shown,
ComRank achieves significant improvements across all datasets. Among the 42 dataset-metric
combinations, ComRank achieves the best performance in 39 cases. The most notable improvement
occurs on the bibtex dataset, where Average Precision increases from 0.237 (under the L-UW method)
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Figure 1: Average Precision on datasets with uniform or biased complementary labels. Dark lines
show the mean of testing results, where light shadows correspond to the std.

Table 5: The running time (in 10² seconds) of methods with multiple uniform complementary labels.

Dataset #Label Classes CCMN L-UW GDF MAE Ru(g) ComRank

enron 53 2.94 3.22 3.79 3.72 3.14 3.15
rcv1-s1 101 4.13 3.67 4.12 3.56 3.76 3.64
bibtex 159 5.11 3.76 4.07 3.69 3.89 3.91
bookmark 208 33.25 17.11 17.18 18.68 17.23 17.19

avg - 11.36 6.94 7.29 7.41 7.01 6.97

to 0.658, clearly demonstrating ComRank’s strong learning capability. Additionally, compared to
CLL methods, ComRank reduces the One Error from 0.73 to 0.308 on the enron dataset, highlighting
its adaptability to MLL in the complementary label setting.

Statistical Tests. Table 2 presents the pairwise t-test results of ComRank against seven methods
at a 0.05 significance level across four metrics. For each pairwise comparison, we use the t-test to
determine statistical significance. If ComRank significantly outperforms the baseline, we add 1 to
the win count; if ComRank is significantly worse, we add 1 to the loss count; otherwise, we add 1
to the tie count. The final results are reported in the format of win/tie/loss. ComRank consistently
outperforms the baselines statistically, achieving 23/5/0 against L-UW, 25/3/0 against CCMN, and
showing similar strong performance against other methods. Particularly, ComRank demonstrates
dominance in metrics One Error, Coverage and Ranking Loss, where it achieves no losses across
almost all baselines. These results highlight the effectiveness of ComRank.

Convergence Analysis on the Uniform Distribution. Figure 1 shows the epoch situation of Average
Precision for compared methods and ComRank in bibtex and scene datasets, and similar tendency
also shows on other datasets. Remaining metrics are in Figure 2 of Appendix G. As shown in the
figure, ComRank demonstrates the best performance among all methods, exhibiting the fastest and
most substantial improvement in Average Precision. Notably, GDF, Ru(g), and CCMN show slight
instability, with oscillations emerging midway or toward the end of training. In contrast, ComRank
maintains high stability throughout the optimization process, highlighting its effectiveness in gradient
descent when complementary labels are selected uniformly.

6.3 Comparison on Biased Complementary Labels

To assess the effectiveness of our method under biased distribution, we train from biased
complementary-labeled data generated by the co-occurrence rates of relevant labels.

Results. Table 3 shows the results of Average Precision, while Coverage, One Error and Ranking
Loss results are in Table 9 of Appendix F due to page limitation. Similar to the uniform setting,
ComRank demonstrates significant improvements across all datasets. Out of the seven datasets, it
achieves the best performance across all metrics on five. Among them, on the scene dataset, One
Error is reduced dramatically from 0.852 (under L-UW) to 0.402. Compared to these methods,
especially URE-based methods such as Ru(g) and GDF, ComRank continues to show superior
performance by reducing Coverage on scene from 0.422 (under Ru(g)) to 0.130, and improving
Average Precision on bibtex from 0.614 (under GDF) to 0.658. These results clearly demonstrate
ComRank’s advantage in handling biased complementary label scenarios.
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Table 6: Comparison of Frobenius norm distances for label correlation preservation.

Datasets CCMN L-UW GDF MAE Ru(g) ComRank

scene 6.44 6.38 1.83 6.42 1.36 1.82
yeast 4.45 4.68 5.79 5.92 3.70 6.34
enron 14.92 12.88 14.33 14.84 3.33 3.65
rcv1-s1 12.42 15.06 11.32 15.04 3.20 4.95
bibtex 15.18 14.98 13.69 15.22 1.80 2.71
bookmark 13.38 15.09 11.38 15.09 1.27 11.26
nuswideBoW 14.52 14.45 9.22 14.58 4.93 8.96

Statistical Tests. Table 4 displays the pairwise t-test results of ComRank compared to various
baselines on biased datasets. In particular, ComRank demonstrates superiority for all metrics with no
losses in all cases. It is worth noting that, ComRank achieves near-perfect performance compared
with Ru(g) (25/3/0), underscoring its adaptability across datasets and biased complementary label
scenarios.

Convergence Analysis on the Biased Distribution. Figure 1 shows the epoch situation of Average
Precision for compared methods and ComRank on various datasets. Figures of Coverage, Ranking
Loss and One Error are in Figure 3 of Apendix G. Also, the curve of ComRank shows the best
performance among all methods, and remains highly stable, demonstrating its effectiveness in the
gradient descent process, especially for biased complementary labels.

6.4 Further Analysis.

Complexity Analysis. With a single complementary label per instance, the proposed ComRank
method has a computational complexity of O(n(K − 1)). Although the complexity grows with
more complementary labels, our implementation avoids the high cost of pairwise comparisons by
leveraging matrix operations with masking, ensuring efficiency even for large label spaces. To
empirically assess scalability, we report the running time on datasets where each instance has K/2
uniform complementary labels (Table 5). ComRank achieves comparable or faster speeds than most
baselines, demonstrating its scalability.

Label Correlation Preservation. We evaluate each method’s ability to preserve label correlations by
comparing the Pearson correlation matrices of the test labels and the predicted scores, under uniform
complementary labels. Their difference, measured by the Frobenius norm distance (lower is better),
is reported in Table 6. ComRank achieves superior correlation preservation over most baselines,
demonstrating that its ranking-based design effectively retains meaningful label dependencies.

Surrogate Loss Ablation. The table 10 in Appendix H reports the Average Precision from an
ablation study on different surrogate losses under uniform complementary labels. We compared
for log loss, sigmoid loss, softmax loss and ComRank (with exponential loss). Their details can be
referred to from Appendix H. Comrank achieves competitive performance in most cases, validating
its effectiveness and Bayes consistency.

7 Conclusion

In this paper, we theoretically analyze the limitations of URE, revealing that its reliance on distri-
butional assumptions restricts its effectiveness to scenarios with uniformly selected complementary
labels. Under biased complementary labels, URE struggles to provide unbiased risk estimation
and fails to capture inter-label relationships. To address these issues, we propose ComRank, a
complementary ranking loss framework that is theoretically justified under both uniform and biased
complementary label settings. Our risk minimization analysis demonstrates that ComRank has
Bayes consistency in both cases. Experimental results further validate its remarkable stability and
effectiveness in learning. A current limitation of this work is that ComRank is based on multiple
assumptions, including distributional assumptions and independence assumptions. In the future, we
hope to extend it to more general scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see the abstract and introduction sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For Theorem 4.5, it has Assumption 5, Assumption 4.4 and the proof is stated
in Appendix B; For Lemma 5.1, the proof is stated in Appendix C; For Theorem 5.2, the
proof is stated in Appendix D;
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed method and experimental settings are provided in the paper, which
enable the proposed method to be reproduced with public datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The datasets used in this paper are public, and their download links are offered
in the paper. The code for this paper will be released after the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental Setting can be found in the section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see section 1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not include the above content.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used in this paper are public.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Details of Datasets

Table 7 describes the datasets used in the experiments of this paper, where #Instance represents the
number of samples, #Features represents the sample feature dimension, #Label Classes represents
the label space, #Cardinality represents the average number of relevant labels of the sample, and
#Domain represents the data type.

Table 7: Characteristics of datasets.

Datasets #Instances #Features #Label Classes #Cardinality #Domain

scene 2407 294 6 1.07 images
yeast 2417 103 14 4.23 biology
enron 1702 1001 53 3.38 Text
rcv1-s1 5815 944 101 2.88 Text
bibtex 7365 1836 159 2.40 images
bookmark 87856 2150 208 1.25 Text
nuswideBoW 269648 500 81 1.87 images

B The Proof of Theorem 4.5

Theorem 4.5. URE under biased distribution: Given p(k = ȳ|x) and R(g), the equality R(g) =
R̄(g) = Rb(g) holds when

Rb(g) = Ep(x,ȳ)

 ∑
Y⊆Y,ȳ ̸=Y

l̄+Y ȳL(g, Y )

 , (7)

where l̄+Y ȳ belongs to the matrix L̄+ = [l̄+]|Y|×K , and L̄+ is the Moore-Penrose pseudoinverse of
L̄T .

Proof. According to Assumption 4.3 and Assumption 4.4, for ȳ /∈ Y , p(ȳ|x, Y ) = z
lY ȳ

. Therefore,

p(x, ȳ) =
∑

Y⊆Y,ȳ /∈Y

p(x, Y, ȳ) =
∑

Y⊆Y,ȳ /∈Y

p(x, Y )p(ȳ|x, Y )

=
∑

Y⊆Y,ȳ /∈Y

z

lY ȳ
p(x, Y ).

Set L̄ = [l̄]|Y|×K , where l̄Y k =

{
z

lY k
, k ∈ Y

0, k /∈ Y
. By expanding p(x, ȳ) and p(x, Y ) with respect to

ȳ and Y as marginal probabilities, we can obtain:
p(x, ȳ = 1)

...
p(x, ȳ = k)

...
p(x, ȳ = K)


K×1

= L̄T


p(x, Y = Y1)
p(x, Y = Y2)

...
p(x, Y = Y|Y|)


|Y|×1

.
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When L̄T is full rank, there exists a matrix L̄+ = [l̄+]|Y|×K , which is the Moore-Penrose pseudoin-
verse of L̄T , satisfies:

L̄+ ·


p(x, ȳ = 1)

...
p(x, ȳ = k)

...
p(x, ȳ = K)


K×1

=


p(x, Y = Y1)
p(x, Y = Y2)

...
p(x, Y = Y|Y|)


|Y|×1

.

Therefore, we can have the relationship

p(x, Y ) =

K∑
ȳ=1,ȳ ̸=Y

l̄+Y ȳp(x, ȳ),

where l̄+Y ȳ is the ȳ-th column of the row corresponding to Y in L̄+. Accordingly, the URE under
Assumption 4.3 is:

Rb(g) = Ep(x,Y ) [L(g, Y )]

=

∫
X

∑
Y⊆Y

L(g, Y )p(x, Y )dx

=

∫
X

∑
Y⊆Y

K∑
ȳ=1

L(g, Y )l̄+Y ȳp(x, ȳ)dx

=

∫
X

K∑
ȳ=1

∑
Y⊆Y,ȳ ̸=Y

L(g, Y )l̄+Y ȳp̄(x, ȳ)dx

= Ep(x,ȳ)

 ∑
Y⊆Y,ȳ ̸=Y

l̄+Y ȳL(g, Y )

 .

C The Proof of Lemma 5.1

Lemma 5.1. Under L̄CR(g(x), ȳ), ḡk(x) ≥ ḡj(x) if and only if p(k = ȳ|x) ≤ p(j = ȳ|x).

Proof. Let ∆Yk = {0, 1,−1} ∈ R1×K , where the ȳ-th position is 1, the k-th position is -1, and
other positions are 0, then:

L̄CR(g(x), ȳ) =

K∑
k=1,k ̸=ȳ

exp(g(x)∆Y T
k ).

Assume αk = exp(g(x)∆Y T
k ), we can obtain

R̄(g) = Ep(x, ȳ)
[
L̄CR(g(x), ȳ)

]
=

∫
X

∫
Y
L̄CR(g, ȳ) p(x, ȳ) dx dȳ

=

∫
X

∑
ȳ∈Y

L̄CR(g, ȳ) p(x, ȳ) dx

=

∫
X

∑
ȳ∈Y

K∑
k=1,k ̸=ȳ

K∑
j=1,j=ȳ

αk p(x, ȳ) dx

=

∫
X

K∑
k=1

K∑
j=1

∑
ȳ∈Y,k ̸=ȳ,j=ȳ

αk p(x, ȳ) dx
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=

∫
X

K∑
k=1

K∑
j=1

∑
ȳ∈Y,k ̸=ȳ,j=ȳ

αk p(ȳ|x) p(x) dx

=

∫
X

K∑
k=1

K∑
j=1

p(k ̸= ȳ, j = ȳ|x)αk p(x) dx.

Since the minimization is performed with respect to g, and x does not affect the minimization,
ḡ∗ = argming∈G R̄(g) can be converted to

ḡ′∗ = argmin
g∈G

R̄′(g) =

K∑
k=1

K∑
j=1

p(k ̸= ȳ, j = ȳ|x)αk

When R̄′(g) reaches g′∗(x), R̄(g) can reach g∗(x). Let βk = p(k ̸= ȳ, j = ȳ|x), thus the first-order
derivative is

∂R̄′

∂g
=

K∑
k=1

K∑
j=1

βk∆Ykαk.

And the second derivative is

∂2R̄′

∂g2
=

K∑
k=1

K∑
j=1

βk∆Y T
k ∆Ykαk ≥ 0K×K .

Therefore when the first derivative is equal to 0, R̄′(g) has the minimum. Let ∂R̄′

∂g = 0, we have

K∑
k=1

K∑
j=1

βk∆Ykαk = 0

⇒
K∑

k=1

K∑
j=1

βk∆Yk exp
(
ḡ′∗(x)∆Y T

k

)
= 0

⇒
K∑

k=1

K∑
j=1

βk∆Yk exp
(
ḡ′∗
j (x)− ḡ′∗

k (x)
)
= 0. (8)

Therefore, the first-order derivative is 0 when

exp
(
ḡ′∗
j (x)− ḡ′∗

k (x)
)
=

p(k = ȳ, j ̸= ȳ|x)
p(k ̸= ȳ, j = ȳ|x)

,

because at this moment for each dimension in Eq. (8),

K∑
j=1

p(k = ȳ, j ̸= ȳ|x)−
K∑

k=1

p(k = ȳ, j ̸= ȳ|x) = 0.

Then, we have

ḡ′∗
j (x)− ḡ′∗

k (x) = log
p(k = ȳ, j ̸= ȳ|x)
p(k ̸= ȳ, j = ȳ|x)

, ∀k, j ∈ Y

⇒ ḡ′∗
k (x)− ḡ′∗

j (x) = log
p(k ̸= ȳ, j = ȳ|x)
p(k = ȳ, j ̸= ȳ|x)

, ∀k, j ∈ Y.

Therefore, ḡ′∗
k (x) > ḡ′∗

j (x) if and only if p(k ̸= ȳ, j = ȳ|x) ≥ p(k = ȳ, j ̸= ȳ|x) holds. That is,
ḡ∗
k(x) > ḡ∗

j (x) if and only if p(k ̸= ȳ, j = ȳ|x) ≥ p(k = ȳ, j ̸= ȳ|x) holds. Then, we have

p(k ̸= ȳ|j = ȳ,x)p(j = ȳ|x) ≥ p(j ̸= ȳ|k = ȳ,x)p(k = ȳ|x)
∵ p(k ̸= ȳ|j = ȳ,x) = p(k ̸= ȳ|x)− p(k ̸= ȳ, j ̸= ȳ|x)

⇒ [p(k ̸= ȳ|x)− p(k ̸= ȳ, j ̸= ȳ|x)]p(j = ȳ|x) ≥ [p(j ̸= ȳ|x)− p(j ̸= ȳ, k ̸= ȳ|x)]p(k = ȳ|x)
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⇒ p(k ̸= ȳ|x)p(j = ȳ|x)− p(k ̸= ȳ, j ̸= ȳ|x)p(j = ȳ|x)
≥ p(j ̸= ȳ|x)p(k = ȳ|x)− p(j ̸= ȳ, k ̸= ȳ|x)p(k = ȳ|x)

∵ p(j = ȳ|x) = 1− p(j ̸= ȳ|x), p(k = ȳ|x) = 1− p(k ̸= ȳ|x)
⇒ p(k ̸= ȳ|x)− p(k ̸= ȳ|x)p(j ̸= ȳ|x)− p(k ̸= ȳ, j ̸= ȳ|x) + p(k ̸= ȳ, j ̸= ȳ|x)p(j ̸= ȳ|x)
≥ p(j ̸= ȳ|x)− p(j ̸= ȳ|x)p(k ̸= ȳ|x)− p(j ̸= ȳ, k ̸= ȳ|x) + p(j ̸= ȳ, k ̸= ȳ|x)p(k ̸= ȳ|x)

⇒ p(k ̸= ȳ|x)− p(j ̸= ȳ|x) ≥ p(k ̸= ȳ, j ̸= ȳ|x)(p(k ̸= ȳ|x)− p(j ̸= ȳ|x)).

This means if and only if p(k ̸= ȳ) ≥ p(j ̸= ȳ|x) does the inequality hold. Therefore, ḡ∗
k(x) ≥ ḡ∗

j (x)
if and only if p(k ̸= ȳ|x) ≥ p(j ̸= ȳ|x) holds.

D The Proof of Theorem 5.2

Theorem 5.2. Bayes Consistency for ComRank: For both uniform and biased complementary label
distributions, ḡk(x) ≥ ḡj(x) holds under L̄CR(g(x), ȳ) if and only if p(k ∈ Y |x) ≥ p(j ∈ Y |x).

Theorem 5.2.1. Under L̄CR(g(x), ȳ), ḡk(x) ≥ ḡj(x) if and only if p(k ∈ Y |x) ≥ p(j ∈ Y |x), for
Assumption 4.1.

Proof. According to Lemma 5.1, ḡ∗k(x) > ḡ∗j (x) if and only if p(k = ȳ|x) ≤ p(j = ȳ|x).

Based on Assumption 4.1, whenever k ∈ ȳ and j /∈ ȳ, it holds that p(k = ȳ|x) ≤ p(j = ȳ|x).
Additionally, when k ∈ ȳ and j ∈ ȳ, p(k ∈ ȳ|x) ≥ p(j ∈ ȳ|x).
That is, ḡ∗

k(x) > ḡ∗
j (x) if and only if p(k ∈ ȳ|x) ≥ p(j ∈ ȳ|x), which satisfies Bayes consistency.

Theorem 5.2.2. Under L̄CR(g(x), ȳ), ḡk(x) ≥ ḡj(x) if and only if p(k ∈ Y |x) ≥ p(j ∈ Y |x), for
Assumption 4.3.

Proof. According to Lemma 5.1, ḡ∗k(x) > ḡ∗j (x) if and only if p(k = ȳ|x) ≤ p(j = ȳ|x). According
to Assumption 4.3, when p(k = ȳ|x) ≤ p(j = ȳ|x), there are two possible cases:

1. k ∈ Y, j /∈ Y : In this case, we must have p(k ∈ Y |x) ≥ p(j ∈ Y |x).
That is, ḡ∗k(x) ≥ ḡ∗j (x) if and only if p(k ∈ Y |x) ≥ p(j ∈ Y |x), which satisfies Bayes consistency.

2. k, j /∈ Y : Since p(k = ȳ|x) = z
lY k

, we obtain⇒ z
lY k

≤ z
lY j

.

Since z is same, we have lY k ≥ lY j .

∵ lY k ∝ p(k ∈ Y |x), we have p(k ∈ Y |x) ≥ p(j ∈ Y |x).
That is, ḡ∗k(x) > ḡ∗j (x) if and only if p(k ∈ Y |x) ≥ p(j ∈ Y |x), which satisfies Bayes consistency.

E Comparison on Uniform Complementary Labels

Table 8 shows the comparison of ComRank against multiple methods in One Error, Ranking Loss
and Coverage under uniform complementary labels. As we can see, ComRank demonstrates strong
performance across all methods and achieves superior results on most datasets.

F Comparison on Biased Complementary Labels

Table 9 shows the comparison of ComRank against multiple methods in One Error, Ranking Loss and
Coverage under biased complementary labels. As we can see, ComRank shows competitive results
among all methods and outperforms most datasets.
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Table 8: Experimental results (mean±std) on the training data with uniform complementary labels.
The best performance of each dataset is shown in boldface, where ↓ / ↑ indicates that smaller/larger
values of metric are better performance.

Methods L-UW CCMN PMLMD PARD MAE GDF Ru(g) ComRank

Coverage↓
scene .437±.022 .404±.021 .388±.033 .189±.020 .412±.020 .157±.016 .172±.021 .143±.013
yeast .565±.016 .664±.068 .509±.033 .622±.066 .548±.017 .534±.015 .569±.021 .520±.019
enron .633±.059 .652±.030 .477±.106 .602±.052 .589±.060 .470±.049 .602±.060 .458±.051
rcv1-s1 .343±.027 .472±.042 .537±.034 .414±.087 .381±.036 .297±.028 .395±.014 .305±.060
bibtex .499±.014 .463±.033 .424±.104 .299±.013 .438±.016 .218±.017 .322±.018 .195±.015
bookmark .289±.007 .395±.022 .669±.028 .275±.007 .299±.007 .210±.005 .294±.009 .199±.005
nuswideBoW .425±.010 .473±.037 .385±.036 .369±.011 .409±.010 .313±.011 .309±.012 .298±.011

Ranking Loss↓
scene .523±.021 .466±.023 .467±.048 .172±.033 .488±.023 .153±.009 .175±.011 .136±.011
yeast .245±.013 .294±.022 .221±.018 .355±.115 .231±.014 .219±.014 .250±.015 .215±.013
enron .438±.028 .481±.034 .262±.030 .370±.031 .387±.034 .231±.029 .395±.024 .221±.029
rcv1-s1 .272±.032 .344±.044 .447±.044 .299±.048 .307±.030 .275±.058 .369±.017 .267±.081
bibtex .491±.009 .479±.031 .460±.102 .280±.013 .426±.009 .206±.013 .308±.014 .180±.012
bookmark .280±.007 .368±.032 .661±.024 .269±.009 .287±.006 .196±.005 .280±.008 .187±.007
nuswideBoW .287±.005 .340±.018 .274±.026 .317±.094 .274±.005 .206±.005 .196±.006 .192±.006

One Error↓
scene .851±.017 .758±.035 .792±.057 .411±.021 .803±.024 .384±.020 .418±.022 .352±.014
yeast .252±.024 .261±.035 .270±.038 .324±.202 .251±.023 .249±.025 .277±.017 .249±.025
enron .723±.060 .781±.058 .519±.136 .588±.074 .647±.075 .330±.116 .668±.074 .308±.124
rcv1-s1 .708±.024 .708±.059 .750±.072 .624±.144 .702±.043 .652±.085 .777±.031 .609±.174
bibtex .915±.010 .894±.024 .881±.033 .720±.025 .871±.015 .480±.023 .744±.018 .418±.021
bookmark .617±.011 .745±.040 .927±.016 .550±.011 .600±.011 .483±.008 .608±.007 .474±.006
nuswideBoW .643±.019 .710±.040 .690±.066 .630±.044 .629±.023 .540±.023 .488±.017 .500±.024

Table 9: Experimental results (mean±std) on the training data with biased complementary labels.
The best performance of each dataset is shown in boldface, where ↓ / ↑ indicates that smaller/larger
values of metric are better performance.

Methods L-UW CCMN PMLMD PARD MAE GDF Ru(g) ComRank

Coverage↓
scene .450±.018 .402±.019 .405±.039 .160±.028 .422±.020 .144±.008 .162±.009 .130±.010
yeast .575±.018 .648±.055 .514±.029 .712±.081 .557±.019 .540±.021 .582±.025 .530±.019
enron .634±.059 .681±.036 .494±.040 .587±.067 .600±.062 .467±.060 .603±.060 .456±.058
rcv1-s1 .348±.049 .425±.038 .524±.049 .397±.047 .384±.042 .354±.050 .441±.008 .350±.061
bibtex .497±.012 .485±.026 .463±.103 .300±.011 .437±.012 .230±.015 .327±.017 .206±.014
bookmark .299±.007 .381±.029 .655±.024 .289±.009 .305±.007 .219±.006 .300±.008 .210±.008
nuswideBoW .404±.011 .449±.020 .384±.037 .451±.115 .391±.011 .313±.011 .307±.012 .298±.011

Ranking Loss↓
scene .506±.025 .466±.025 .447±.039 .208±.022 .476±.024 .171±.016 .188±.024 .154±.014
yeast .240±.011 .298±.040 .216±.026 .277±.034 .228±.011 .218±.011 .241±.011 .212±.011
enron .439±.029 .452±.043 .250±.055 .386±.039 .377±.034 .233±.029 .396±.030 .221±.024
rcv1-s1 .271±.018 .383±.033 .452±.036 .321±.103 .305±.027 .223±.035 .323±.026 .230±.070
bibtex .493±.012 .455±.034 .423±.115 .278±.011 .427±.013 .194±.015 .303±.016 .170±.013
bookmark .270±.007 .386±.025 .677±.028 .255±.007 .281±.007 .186±.005 .274±.009 .175±.005
nuswideBoW .309±.005 .363±.040 .274±.024 .256±.010 .293±.004 .208±.006 .200±.006 .193±.006

One Error↓
scene .852±.026 .749±.033 .807±.052 .482±.031 .820±.018 .435±.030 .447±.036 .402±.024
yeast .254±.024 .254±.029 .267±.034 .293±.127 .252±.025 .253±.024 .265±.025 .255±.025
enron .727±.058 .764±.073 .493±.108 .632±.104 .627±.079 .341±.136 .669±.068 .324±.144
rcv1-s1 .693±.032 .704±.080 .737±.085 .568±.125 .716±.053 .611±.038 .724±.068 .561±.150
bibtex .917±.011 .886±.033 .811±.126 .717±.024 .873±.014 .461±.025 .747±.019 .414±.029
bookmark .589±.016 .755±.040 .926±.013 .546±.011 .582±.011 .469±.008 .604±.016 .448±.009
nuswideBoW .649±.018 .719±.058 .668±.055 .608±.026 .636±.021 .537±.027 .490±.017 .496±.023
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(d) Ranking Loss on scene
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(f) One Error on scene

Figure 2: Coverage, Ranking Loss and One Error on various datasets with uniform complementary
labels.
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(d) Ranking Loss on scene
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Figure 3: Coverage, Ranking Loss and One Error on various datasets with biased complementary
labels. Dark lines show the mean of testing results, where light shadows correspond to the std.

G Figure

Figure 2 and Figure 3 illustrate the epoch-wise trends of Coverage, Ranking Loss and One Error
for CCMN, L-UW, GDF, Ru(g), and ComRank, for both uniform complementary labels and biased
complementary labels. As observed, ComRank consistently outperforms other methods, displaying
the most rapid and least pronounced decline in Coverage, One Error and Ranking Loss. Notably,
GDF, Ru(g), and CCMN exhibit slight instability, with fluctuations emerging either at the initial
stages or towards the end of the descent. In contrast, ComRank maintains remarkable stability,
underscoring its effectiveness in the gradient descent process whenever complementary labels are
selected uniformly or biasedly.
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H Surrogate Loss Ablation.

The Table 10 reports the Average Precision from an ablation study on different surrogate losses under
uniform complementary labels. The surrogate losses include:

Log loss: L̄(g(x), ȳ) =
∑K

k=1,k ̸=ȳ log (1 + (gȳ(x)− gk(x))).

Sigmoid loss: L̄(g(x), ȳ) =
∑K

k=1,k ̸=ȳ (gȳ(x)− gk(x)). Since the predicted probability g in MLL
is already produced through an output sigmoid function to keep g in [0,1], we directly use the
difference between g values.

Softmax loss: L̄(g(x), ȳ) =
∑K

k=1,k ̸=ȳ

(
gsoftmax
ȳ (x)− gsoftmax

k (x)
)

. Here, gsoftmax refers to
the version of g where the output function is changed from sigmoid to softmax.

Our method achieves competitive performance in most cases, validating its effectiveness and Bayes
consistency.

Table 10: Average Precision of different surrogate losses with uniform complementary labels.

Surrogate loss Log Sigmoid Softmax ComRank

scene 0.419 0.687 0.677 0.785
yeast 0.712 0.732 0.720 0.729
enron 0.547 0.591 0.567 0.627
rcv1-s1 0.263 0.475 0.280 0.605
bibtex 0.453 0.649 0.450 0.677
bookmark 0.197 0.629 0.586 0.618
nuswideBoW 0.485 0.490 0.488 0.583
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